The Different Fractal Structure of Oxide Nanopowders Depending on Method of Production

Article Preview

Abstract:

This study was undertaken to compare chemically identical nanoparticles that have been synthesed by different methods. The methodology applied allows the identification of different characteristics in the structure and surface parameters of nanoparticles. The study shows that the structural parameters of nanoparticles are to a great extend related to the conditions in which nanoparticles are formed. This is demonstrated through the comparison of three oxides and their different methods of synthesis. The results show that the method of synthesis defines the structure of the nanoparticles; the surface and qualitative and quantitative parameters of the crystaline phases, energy shifts and changes in the internal electron levels. The examples of nanoliquids and the associated polymer strength identify that the interaction of nanoparticles with the environment is also depends on the synthesis method. It is proposed that a fractal dimension may be used as a basic parameter to classify nanoparticles and predict the properties in their interaction with various media.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 271)

Pages:

124-132

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Bardakhanov, I.V. Vasiljeva, N.K. Kuksanov, S.V. Mjakin, Surface functionality features of nanosized silica obtained by electron beam evaporation at ambient pressure, Advances in Materials Science and Engineering, vol. 2010, 2010, Article ID 241695, 5p.

DOI: 10.1155/2010/241695

Google Scholar

[2] V.V. Syzrantsev, A.P. Zavyalov, S.P. Bardakhanov, The role of associated liquid layer at nanoparticles and its influence on nanofluids viscosity, Int. J. of Heat and Mass Transfer, vol. 72, 2014, pp.501-506.

DOI: 10.1016/j.ijheatmasstransfer.2013.12.082

Google Scholar

[3] P. Cheviron, F. Gouanvé, E. Espuche, Effect of silver nanoparticles' generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films, J. Nanopart. Res., vol. 17, 2015, p.364.

DOI: 10.1007/s11051-015-3173-4

Google Scholar

[4] M. Ya. Gen, Yu. I. Petrov, Disperse Condensates of Metal Vapor, Russ Chem Rev, vol. 38 (12), 1969, p.1007–1024.

DOI: 10.1070/rc1969v038n12abeh001889

Google Scholar

[5] I. Petrov, Physics of small particles, Nauka, Moscow, (1982).

Google Scholar

[6] G.A. Niklasson, A. Torebring, C. Larsson et al., Fractal dimensions of gas-evaporated Co aggregates: role of magnetic coupling, Phys. Rev. Lett., vol. 60, 1988, pp.1735-1738.

DOI: 10.1103/physrevlett.60.1735

Google Scholar

[7] P.J. Meakin, The effects of random bond breaking on diffusion limited cluster-cluster aggregation, Chem. Phys., vol. 83, 1985, pp.3645-3649.

DOI: 10.1063/1.449119

Google Scholar

[8] P.J. Meakin, R. Jullien, The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster – cluster aggregation, Chem. Phys., vol. 89, 1988, pp.246-250.

DOI: 10.1063/1.455517

Google Scholar

[9] А.А. Lushnikov, А.V. Pahomov, G.А. Chernyaeva, Fractal size of aggregates, produced by a laser vapouring of metals, Reports of the Academy of Science, vol. 192, 1987, p.86.

Google Scholar

[10] S.R. Forrest, T.A. Witten, Long-range correlations in smoke-particle aggregates, J. Phys. A., vol. 12, 1979, p. L109 – L117.

DOI: 10.1088/0305-4470/12/5/008

Google Scholar

[11] S.P. Bardakhanov, A.I. Korchagin, N.K. Kuksanov, A.V. Lavrukhin, R.A. Salimov, S.N. Fadeev, V.V. Cherepkov, Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator, Materials Science and Engineering: B, vol. 132, 2006, pp.204-208.

DOI: 10.1016/j.mseb.2006.02.038

Google Scholar

[12] G. Dobrescu, E. Balabanova, M. Zaharescu, N.I. Ionescu, TEM Micrograph fractal analysis of silica powders, Revue Roumanie de chimie, vol. 53, 2008, p.217–221.

Google Scholar

[13] Y.P. Dikov, I.A. Brytov, Y.N. Romashenko, S.P. Dolin, Peculiarities of electron structure of silicates, Nauka, Moscow, 1979, p.128.

Google Scholar

[14] B. Mandelbrot, The fractal geometry of nature. San Francisco: W.H. Freeman, 1983, p.656.

Google Scholar

[15] U.A. Abzaev, U.S. Sarkisov, D.A. Afanas'ev, A.A. Klopotov, N. Gorlenko, V.D. Klopotov, Structural-phase state analysis of calcium mono-aluminate, Advanced Materials Research, vol. 1013, 2014, p.102–107.

DOI: 10.4028/www.scientific.net/amr.1013.102

Google Scholar

[16] A.K. Rappe, K.S. Colwell, Application of a universal force field to metal complexes, Inorg. Chem, vol. 32, 1993, p.3438–3450.

DOI: 10.1021/ic00068a012

Google Scholar

[17] V.V. Syzrantsev, K.V. Zobov, A.P. Zavjalov, S.P. Bardakhanov, The associated layer and viscosity of nanoliquids, Doklady Physics, vol. 60, 2015, pp.46-48.

DOI: 10.1134/s1028335815010103

Google Scholar

[18] А.P. Zavyalov, Т.А. Brusentseva, L.S. Vikulina, S. Bardakhanov, Т.А. Chimytov, V.V. Syzrantsev, The interaction of silica nanoparticles with polymers, Nanoindustry, vol. 39, 2013, pp.32-35.

Google Scholar