The Effects of Gallium Additions on the Microstructure of Lead-Free Solder Materials: A Short Review

Article Preview

Abstract:

This paper reviews the results of gallium (Ga) additions on the properties of Lead (Pb)-free solder alloys in terms of the solderability, microstructure and mechanical properties. Throughout the review, it is proven that when 0.5% of Ga is added, the shear force is improved and the grain size of the solder has refined remarkably. Besides, the addition of Ga has significantly suppressed the interfacial intermetallic compounds (IMCs) formation at solder/Copper substrate interface. This is caused by the formation of the Cu2Ga phase around the joint surface during solidification which decrease the growth rate of the IMCs layer. In fact, the enhancement in the mechanical aspect can also be affiliated with the improvement of the IMCs of the solder due to the addition of Ga. Moreover, Ga element also added to act as solid solution strengthening in β-Sn matrix. Furthermore, the addition of Ga element definitely decreases the melting temperature of Pb-free solder in Sn-0.7Cu Pb-free solder. As Ga addition also improve the oxidation resistance and reduce the surface tension of the solder, thus the solderability of the Pb-free solder alloys is slightly improved.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

187-193

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. A. Mohd Salleh, C. M. Gourlay, J. W. Xian, S. A. Belyakov, H. Yasuda, S. D. McDonald and K. Nogita, Scientific Reports Vol 7, Article number: 40010, (2017).

Google Scholar

[2] S.A. Musa, M.A.A Mohd Salleh and N. Saud: Advan. Mater. Res. Vol 795, (2013), pp.518-521.

Google Scholar

[3] M.A.A Mohd Salleh, S.D. McDonald and K. Nogita: App. Mech. Mater. Vol 421, (2013) pp.260-266.

Google Scholar

[4] T. Xin: China Population, Resour. Environ. Vol 17, (2007), pp.66-77.

Google Scholar

[5] M.A.A Mohd Salleh, S.D. McDonald, Y.Terada and K.Nogita: Mater. & Design. Vol 82, (2015), pp.136-147.

Google Scholar

[6] W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël and A. Garcia: J. Alloys Comp. Vol 572, (2013), pp.97-106.

DOI: 10.1016/j.jallcom.2013.03.234

Google Scholar

[7] Y.C. Chan and D. Yang: Prog. Mater. Sci. Vol 55, (2010), p.428–475.

Google Scholar

[8] M. Abtew and G. Selvaduray: Mater. Sci. Eng. R. 271, (2000), p.95–141.

Google Scholar

[9] M.A.A Mohd Salleh, M.H. Zan@Hazizi, Z.A. Ahmad, K. Hussin and K.R. Ahmad: Advan. Materi. Res. Vol 277, (2011), pp.106-111.

Google Scholar

[10] K.N. Tu, H.-Y. Hsiao and C. Chen: Microelectron. Reliab. Vol 53, (2013), p.2–6.

Google Scholar

[11] F. Wang, X. Ma and Y. Qian: Scripta Mater. Vol 53, (2005), p.699–702.

Google Scholar

[12] M.G. Cho, S.K. Kang, S.-K. Seo, D.-Y. Shih and H.M. Lee: J. Electron. Mater. Vol 38, (2009), p.2242–2250.

Google Scholar

[13] G. Melcioiu, V.A. Serban, M. Ashworth, C. Codrean, M. Li ̧ta ̆ and G.D. Wilcox: in Solid State Phenomena, (Trans Tech Publication 2014).

Google Scholar

[14] E. Iver, A. Boesenberg, J. Harringa, D. Riegner, A. Steinmetz and D. Hillman: J. Electron. Mater. Vol 41, (2012), p.390–397.

Google Scholar

[15] H. Ye, S. Xue and M. Pecht: J. Mater. Res. Vol 27, (2012), p.1887–1894.

Google Scholar

[16] M.S. Park and R. Arro ́yave: Acta Mater. Vol 60, (2012), p.923–934.

Google Scholar

[17] H. Lin, C. Lu, C. Liu, C. Chen, D. Chen, J.-C. Kuo and K.N. Tu: Acta Mater. Vol 61, (2013), p.4910–4919.

Google Scholar

[18] J. Koo, J. Chang, Y.W. Lee, S.J. Hong, K.-S. Kim and H.M. Lee: J. Alloys Compd. Vol 608, (2014) p.126–132.

Google Scholar

[19] L. Yang, Y. Zhang, J. Dai, Y. Jing, J. Ge and N. Zhang: Mater. Des. Vol 67, (2015), p.209–216.

Google Scholar

[20] J. Shen, Y. Pu, D. Wu, Q. Tang and M. Zhao: J. Mater. Sci. Mater. Electron. Vol 26, (2015), p.1572–1580.

Google Scholar

[21] F. Somidin, M.A.A. Salleh and K. Rafezi, Advan. Mater. Res. Vol 620, (2013), pp.105-111.

Google Scholar

[22] D.X. Luo, S.B. Xue and Z.Q. Li: J Mater Sci: Mater. Electron. Vol 25, (2014) p.3566–3571.

Google Scholar

[23] H.J. Caul, D.L. Smith and J. Am. Dent. Assoc. Vol 53, (1956), p.3–315.

Google Scholar

[24] T.C. Hsuan and K.L. Lin: J. Alloys Compd. Vol 409, (2009), p.350.

Google Scholar

[25] K.I. Chen and K.L. Lin: J. Electron. Mater. Vol 32, (2003)
, p.10–1111.

Google Scholar

[26] K.I. Chen, S.C. Cheng, C.H. Cheng, S. Wu, Y.L. Jiang and T.C. Cheng: Adv. Mater. Sci. Eng. 2014, 1 (2014).

Google Scholar

[27] W.X. Chen, S.B Xui, H. Wang, J.X Wang, Z.J. Han and J. Mater Sci: Mater Electron. Vol 21, (2010) p.496–502.

Google Scholar

[28] G. Zeng, Stuart D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.A.A. Mohd Salleh and K. Nogita: J. Alloys Comp, Vol 685, (2016), pp.471-482.

Google Scholar

[29] H.W. Wang, J.S. Fang, Z.Q. Xu and X.P. Zhang: J. Mater Sci: Mater Electron. Vol 26 (2015) p.3589–3595.

Google Scholar

[30] Q.K. Zhang, W.M. Long, X.Q. Yu, Y.Y. Pei and P.X. Qiao: J. Alloys Compd. Vol 622, (2015), p.973–978.

Google Scholar