The Effect of Temperature on Tin Whisker Growth under Mechanical Stress

Article Preview

Abstract:

The whisker phenomenon has caused the reliability issues which induce short circuit in the electronic manufacturing industries. The research is conducted to study on the formation of pure tin whisker under the control of stress and temperature with the application of mechanical indentation and the formation of whisker can be classified into distinct shape accordingly. The specified ranges of stress and surrounding temperature are set up accordingly to promote the whisker mechanism of pure tin whisker. The pure tin whisker formed is examined in term of morphology characterization via Optical Microscope and Scanning Electron Microscope to analyze on the effect of stress and temperature on the growth morphology of pure tin whisker. This report outlines the research in progress on the development of the pure tin whisker formation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

194-199

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Bátorfi, B. Illés, and O. Krammer, Whisker formation from SnAgCu alloys and tin platings - review on the latest results,, in 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME), 2015, p.373–376.

DOI: 10.1109/siitme.2015.7342356

Google Scholar

[2] Y. Liu, P. Zhang, Y. M. Zhang, J. Ding, J. J. Shi, and Z. M. Sun, Spontaneous growth of Sn whiskers and a new formation mechanism,, Mater. Lett., vol. 178, p.111–114, (2016).

DOI: 10.1016/j.matlet.2016.04.173

Google Scholar

[3] H. H. Manko, Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill, (2001).

Google Scholar

[4] M. A. A. Mohd Salleh, S. McDonald, and K. Nogita, Non-Metal Reinforced Lead-Free Composite Solder Fabrication Methods and its Reinforcing Effects to the Suppression of Intermetallic Formation: Short Review,, Appl. Mech. Mater., vol. 421, p.260–266, (2013).

DOI: 10.4028/www.scientific.net/amm.421.260

Google Scholar

[5] M. A. A. Mohd Salleh, M. H. Hazizi, Z. A. Ahmad, K. Hussin, and K. R. Ahmad, Wettability, Electrical and Mechanical Properties of 99.3Sn-0.7Cu/Si3N4 Novel Lead-Free Nanocomposite Solder,, Adv. Mater. Res., vol. 277, p.106–111, (2011).

DOI: 10.4028/www.scientific.net/amr.277.106

Google Scholar

[6] M. A. A. Mohd Salleh, C. M. Gourlay, J. W. Xian, S. A. Belyakov, H. Y.asuda, S. D. McDonald, and K. Nogita,In situ imaging of microstructure formation in electronic interconnections,, Sci. Rep., vol. 7, p.40010, Jan. (2017).

DOI: 10.1038/srep40010

Google Scholar

[7] G. Zeng, S. D. McDonald, D.Mu, Y.Terada, H. Yasuda, Q. Gu, M. A. A. Mohd Salleh, and K. Nogita,., The influence of ageing on the stabilisation of interfacial (Cu,Ni)6(Sn,Zn)5 and (Cu,Au,Ni)6Sn5 intermetallics in Pb-free Ball Grid Array (BGA) solder joints,, J. Alloys Compd., vol. 685, p.471–482, (2016).

DOI: 10.1016/j.jallcom.2016.05.263

Google Scholar

[8] N. M. Nasir, N. Saud, M. Nazree Derman, A. A. M. Salleh, M. I. I. Ramli, and R. M. Said, Effect of TiO2 Reinforcement on Microstructure and Microhardness of Low-Silver SAC107 Lead-Free Solder Composite Solder,, Mater. Sci. Forum, vol. 803, no. February 2016, p.273–277, (2014).

DOI: 10.4028/www.scientific.net/msf.803.273

Google Scholar

[9] L. C. Tsao, Suppressing effect of 0.5 wt.% nano-TiO2addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging,, J. Alloys Compd., vol. 509, no. 33, p.8441–8448, (2011).

DOI: 10.1016/j.jallcom.2011.05.116

Google Scholar

[10] M. I. I. Ramli, N. Saud, M. A. A. M. Salleh, M. N. Derman, and R. M. Said, Effect of TiO2 additions on Sn-0.7Cu-0.05Ni lead-free composite solder,, Microelectron. Reliab., vol. 65, p.255–264, (2016).

DOI: 10.1016/j.microrel.2016.08.011

Google Scholar

[11] M. J. Bozack, S. K. Snipes, and G. N. Flowers, Methods for fast, reliable growth of Sn whiskers,, Surf. Sci., vol. 652, p.355–366, (2015).

DOI: 10.1016/j.susc.2016.01.010

Google Scholar

[12] M. Sun, X. Long, M. Dong, Y. Xia, F. Hu, A. Hu, and M. Li, Mitigation of tin whisker growth by inserting Ni nanocones,, Mater. Charact., vol. 134, p.354–361, (2017).

DOI: 10.1016/j.matchar.2017.11.002

Google Scholar

[13] R. T. Winslow, G. Iyer, and M. M. Cruz, Hot Solder Dip and Minimizing Thermal Gradients. (2006).

Google Scholar

[14] C. K. Lin and T. H. Lin, Effects of continuously applied stress on tin whisker growth,, Microelectron. Reliab., vol. 48, no. 10, p.1737–1740, (2008).

DOI: 10.1016/j.microrel.2008.04.013

Google Scholar

[15] E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms,, Prog. Surf. Sci., vol. 88, no. 2, p.103–131, (2013).

DOI: 10.1016/j.progsurf.2013.02.002

Google Scholar

[16] M. W. Boettinger, William J., Kil-Won Moon, Gery Stafford, and Mark Vaudin, Lead-Free Surface Finishes for Electronic Components: Tin Whisker Growth.

Google Scholar

[17] B.-Z. Lee and D. N. Lee, Spontaneous growth mechanism of tin whiskers,, Acta Mater., vol. 46, no. 10, p.3701–3714, (1998).

DOI: 10.1016/s1359-6454(98)00045-7

Google Scholar

[18] B. Illés and B. Horváth, Tin whisker growth from micro-alloyed SAC solders in corrosive climate,, J. Alloys Compd., vol. 616, p.116–121, (2014).

DOI: 10.1016/j.jallcom.2014.07.103

Google Scholar

[19] A. Skwarek, M. Pluska, J. Ratajczak, A. Czerwinski, K. Witek, and D. Szwagierczak, Analysis of tin whisker growth on lead-free alloys with Ni presence under thermal shock stress,, Mater. Sci. Eng. B, vol. 176, no. 4, p.352–357, (2011).

DOI: 10.1016/j.mseb.2010.10.001

Google Scholar

[20] D. Susan, W. Yelton, J. Michael, and P. Vianco, Recent Tin Whisker Research At Sandia. (2012).

Google Scholar

[21] W. J. Boettinger, C. E. Johnson, L. A. Bendersky, K.-W. Moon, M. E. Williams, and G. R. Stafford, Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits,, Acta Mater., vol. 53, no. 19, p.5033–5050, (2005).

DOI: 10.1016/j.actamat.2005.07.016

Google Scholar