Effect of Zn Additions on Thermal and Mechanical Properties of Sn-0.7Cu-xZn Solder Alloy

Article Preview

Abstract:

This research examines the influences of minor addition of Zn on the thermal and mechanical properties in Sn-0.7Cu solder alloy. The addition of 0.5, 1.0 and 1.5 wt.% of Zn were added into Sn-0.7Cu by using conventional casting method. It show that minor Zn addition has refined and promoted the nucleation of β-Sn phase. The vickers hardness show a increases the hardness of Sn-0.7Cu solder alloy with increasing amount of Zn. For thermal properties, with a small addition of Zn, it did not change the melting but has a slight decrease the undercooling of Sn-0.7Cu solder alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

200-205

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A.A.M. Salleh, S. McDonald, and K. Nogita, Applied Mechanics and Materials. Vol. 421 (2013), pp.260-266.

Google Scholar

[2] M.A.A.M. Salleh, M.H. Hazizi, Z.A. Ahmad, K. Hussin, and K.R. Ahmad, Advanced Materials Research. Vol. 277 (2011), pp.106-111.

Google Scholar

[3] M.A.A.M. Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, and K. Nogita, Scientific Reports. Vol. 7 (2017), p.40010.

Google Scholar

[4] M.I.I. Ramli, M.A.A.M. Salleh, M.N. Derman, R.M. Said, N.M. Nasir, and N. Saud. Wettability and Shear Strength of Sn-Cu-Ni-xSi3N4 Composite Solder. in Key Engineering Materials. 2016. Trans Tech Publications.

DOI: 10.4028/www.scientific.net/kem.700.152

Google Scholar

[5] M. Ramli, M.M. Salleh, M.A.B. Abdullah, R. Said, A. Sandu, and N. Saud. Microstructural and phase analysis of Sn-Cu-Ni-XSiC composite solder. in AIP Conference Proceedings. 2017. AIP Publishing.

DOI: 10.1063/1.4981848

Google Scholar

[6] H. Wang, J. Fang, Z. Xu, and X. Zhang, J Mater Sci: Mater Electron. Vol. 26 (2015), pp.3589-3595.

Google Scholar

[7] Y. Gao, J. Hui, X. Sun, F. Zhao, J. Zhao, C. Cheng, Z. Luo, and L. Wang, Procedia Engineering. Vol. 16 (2011), pp.807-811.

Google Scholar

[8] H.R. Kotadia, A. Rahnama, A. Das, S. Sridhar, and S.H. Mannan, p.

Google Scholar

[9] E. Siahaan, IOP Conference Series: Materials Science and Engineering. Vol. 237 (2017), p.012044.

Google Scholar

[10] H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, and M. Lu, Materials Science and Engineering A. Vol. 527 (2010), pp.1343-1350.

Google Scholar

[11] G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.M. Salleh, and K. Nogita, Journal of Alloys and Compounds. Vol. 685 (2016), pp.471-482.

DOI: 10.1016/j.jallcom.2016.05.263

Google Scholar

[12] G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Materialia. Vol. 83 (2015), pp.357-371.

DOI: 10.1016/j.actamat.2014.10.003

Google Scholar

[13] F. Wang, X. Ma, and Y. Qian, Scripta Materialia. Vol. 55 (2005), pp.699-702.

Google Scholar