Optical and Electrical Investigation of Electrospun PAN/TiO2, Bi2O3, SiO2 Composite Thin Films

Article Preview

Abstract:

The aim of study was to produce a nanocomposite polymer fibrous thin films, with the participation of the reinforcing phase in the form of TiO2/Bi2O3/SiO2 nanoparticles with a matrix of polyacrylonitrile (PAN), made by electrospinning of solution and investigation of optical and eletrical properties of obtained nanomaterials. To determination of structore of used ceramic nanoparticles the X-ray diffraction analysis (XRD) was carrying out. The morphology of the obtained polymeric and composite fibrous mats and dispersion of nanoparticles in their volume was examined using scanning electron microscopy (SEM). All the physical properties of which were: the dielectric constant, and refractive index were tested and plotted against the concentration by weight of the used reinforcing phase which was as follows: 0%, 4%, 8%, 12% for each type of nanoparticles. The optical and electrical constants of obtained thin folms was performed on the basis of UV-Vis spectra of absorbance as a function of the wavelength. Using two metods: the method proposed by the author and the recorded absorbance spectra and spectroscopic ellipsometry determined the refractive index n, real n' and imaginary k part of the refractive index as a function of the wavelength, complex dielectric permeability , real and imaginary part r and i of the dielectric permeability as a function of the wavelength of the polimeric and composite fibrous thin films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 293)

Pages:

1-34

Citation:

Online since:

July 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.

DOI: 10.1016/s0032-3861(99)00068-3

Google Scholar

[2] Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied physics, 87(9), 4531-4547.

DOI: 10.1063/1.373532

Google Scholar

[3] Tripatanasuwan, S., Zhong, Z., & Reneker, D. H. (2007). Effect of evaporation and solidification of the charged jet in electrospinning of poly (ethylene oxide) aqueous solution. Polymer, 48(19), 5742-5746.

DOI: 10.1016/j.polymer.2007.07.045

Google Scholar

[4] Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216.

DOI: 10.1088/0957-4484/7/3/009

Google Scholar

[5] Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[6] Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.

DOI: 10.1016/s0032-3861(99)00068-3

Google Scholar

[7] Kim, J. S., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer composites, 20(1), 124-131.

DOI: 10.1002/pc.10340

Google Scholar

[8] Kim, J. S., & Reneker, D. H. (1999). Polybenzimidazole nanofiber produced by electrospinning. Polymer Engineering & Science, 39(5), 849-854.

DOI: 10.1002/pen.11473

Google Scholar

[9] Srinivasan, G., & Reneker, D. H. (1995). Structure and morphology of small diameter electrospun aramid fibers. Polymer international, 36(2), 195-201.

DOI: 10.1002/pi.1995.210360210

Google Scholar

[10] Fang, X. D. H. R., & Reneker, D. H. (1997). DNA fibers by electrospinning. Journal of Macromolecular Science, Part B: Physics, 36(2), 169-173.

DOI: 10.1080/00222349708220422

Google Scholar

[11] Patil, R., Tsukruk, V. V., & Reneker, D. H. (1992). Molecular packing at surfaces of oriented polyimide fiber and film observed by atomic force microscopy. Polymer Bulletin, 29(5), 557-563.

DOI: 10.1007/bf00296718

Google Scholar

[12] Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of applied physics, 89(5), 3018-3026.

DOI: 10.1063/1.1333035

Google Scholar

[13] Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of applied physics, 90(9), 4836-4846. Newsome, T. E., & Olesik, S. V. (2014). Electrospinning silica/polyvinylpyrrolidone composite nanofibers. Journal of Applied Polymer Science, 131(21).

DOI: 10.1063/1.1408260

Google Scholar

[14] Prahsarn, C., Klinsukhon, W., & Roungpaisan, N. (2011). Electrospinning of PAN/DMF/H 2 O containing TiO 2 and photocatalytic activity of their webs. Materials Letters, 65(15), 2498-2501.

DOI: 10.1016/j.matlet.2011.05.018

Google Scholar

[15] Im, J. S., Kim, M. I., & Lee, Y. S. (2008). Preparation of PAN-based electrospun nanofiber webs containing TiO 2 for photocatalytic degradation. Materials Letters, 62(21), 3652-3655.

DOI: 10.1016/j.matlet.2008.04.019

Google Scholar

[16] Jeun, J. P., Park, D. W., Seo, D. K., Kim, H. B., Nho, Y. C., & Kang, P. H. (2011). Enhancement of photocatalytic activity of pan-based nanofibers containing sol-gel-derived TiO2 nanoparticles by E-beam irradiation. Reviews on Advanced Materials Science, 28(1), 26-30.

Google Scholar

[17] Ji, B. C., Bae, S. S., Rabbani, M. M., & Yeum, J. H. (2013). Photocatalytic Activity of Electrospun PAN/TiO₂ Nanofibers in Dye Photodecomposition. 한국염색가공학회지, 25(2), 94-101.

DOI: 10.5764/tcf.2013.25.2.94

Google Scholar

[18] Ji, L., Saquing, C., Khan, S. A., & Zhang, X. (2008). Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology, 19(8), 085605.

DOI: 10.1088/0957-4484/19/8/085605

Google Scholar

[19] Ji, L., & Zhang, X. (2008). Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters, 62(14), 2161-2164.

DOI: 10.1016/j.matlet.2007.11.051

Google Scholar

[20] Ji, L., Lin, Z., Medford, A. J., & Zhang, X. (2009). Porous carbon nanofibers from electrospun polyacrylonitrile/SiO 2 composites as an energy storage material. Carbon, 47(14), 3346-3354.

DOI: 10.1016/j.carbon.2009.08.002

Google Scholar

[21] Wang, N., Si, Y., Wang, N., Sun, G., El-Newehy, M., Al-Deyab, S. S., & Ding, B. (2014). Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separation and Purification Technology, 126, 44-51.

DOI: 10.1016/j.seppur.2014.02.017

Google Scholar

[22] Leontie, L., Caraman, M., Delibaş, M., & Rusu, G. I. (2001). Optical properties of bismuth trioxide thin films. Materials Research Bulletin, 36(9), 1629-1637.

DOI: 10.1016/s0025-5408(01)00641-9

Google Scholar

[23] Zhang, L., Hashimoto, Y., Taishi, T., Nakamura, I., & Ni, Q. Q. (2011). Fabrication of flower-shaped Bi 2 O 3 superstructure by a facile template-free process. Applied Surface Science, 257(15), 6577-6582.

DOI: 10.1016/j.apsusc.2011.02.081

Google Scholar

[24] Nowak-Woźny, D., Janiczek, T., Mielcarek, W., & Gajewski, J. B. (2009). Fractional electrical model for modified bismuth oxide. Journal of Electrostatics, 67(1), 18-21.

DOI: 10.1016/j.elstat.2008.10.001

Google Scholar

[25] Wang, Y., Zhao, J., & Wang, Z. (2011). A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1), 409-413.

DOI: 10.1016/j.colsurfa.2011.01.038

Google Scholar

[26] An, T., Pant, B., Kim, S. Y., Park, M., Park, S. J., & Kim, H. Y. (2017). Mechanical and optical properties of electrospun nylon-6, 6 nanofiber reinforced cyclic butylene terephthalate composites. Journal of Industrial and Engineering Chemistry, 55, 35-39.

DOI: 10.1016/j.jiec.2017.06.044

Google Scholar

[27] Li, B., Pan, S., Yuan, H., & Zhang, Y. (2016). Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites. Composites Part A: Applied Science and Manufacturing, 90, 380-389.

DOI: 10.1016/j.compositesa.2016.07.024

Google Scholar

[28] Barakat, N. A., Khil, M. S., Sheikh, F. A., & Kim, H. Y. (2008). Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. The Journal of Physical Chemistry C, 112(32), 12225-12233.

DOI: 10.1021/jp8027353

Google Scholar

[29] Chuangchote, S., Sagawa, T., & Yoshikawa, S. (2008). Fabrication and optical properties of electrospun conductive polymer nanofibers from blended polymer solution. Japanese Journal of Applied Physics, 47(1S), 787.

DOI: 10.1143/jjap.47.787

Google Scholar

[30] Weng, S., Lin, Z., Chen, L., & Zhou, J. (2010). Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochimica Acta, 55(8), 2727-2733.

DOI: 10.1016/j.electacta.2009.12.032

Google Scholar

[31] Wannapop, S., Thongtem, T., & Thongtem, S. (2012). Photoemission and energy gap of MgWO 4 particles connecting as nanofibers synthesized by electrospinning–calcination combinations. Applied Surface Science, 258(11), 4971-4976.

DOI: 10.1016/j.apsusc.2012.01.133

Google Scholar

[32] Ren, Z., Jing, G., Liu, Y., Gao, J., Xiao, Z., Liu, Z., ... & Shen, G. (2013). Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 3(16), 5453-5458.

DOI: 10.1039/c3ra23413d

Google Scholar

[33] Wang, Y., Ramos, I., & Santiago-Avilés, J. J. (2007). Optical bandgap and photoconductance of electrospun tin oxide nanofibers. Journal of Applied Physics, 102(9), 093517.

DOI: 10.1063/1.2800261

Google Scholar

[34] Wang, C., Shao, C., Wang, L., Zhang, L., Li, X., & Liu, Y. (2009). Electrospinning preparation, characterization and photocatalytic properties of Bi 2 O 3 nanofibers. Journal of colloid and interface science, 333(1), 242-248.

DOI: 10.1016/j.jcis.2008.12.077

Google Scholar

[35] Viter, R., Katoch, A., & Kim, S. S. (2014). Grain size dependent bandgap shift of SnO2 nanofibers. Metals and Materials International, 20(1), 163.

DOI: 10.1007/s12540-013-6027-6

Google Scholar

[36] Galos, R., Shi, Y., Ren, Z., Synowicki, R., Sun, H., Nykypanchuk, D., & Yuan, J. (2017). The dielectric constant of PZT nanofiber at visible and NIR wavelengths. Nano-Structures & Nano-Objects.

DOI: 10.1016/j.nanoso.2017.10.001

Google Scholar

[37] Dorywalski, K., & Patryn, A. (2014). Technika elipsometrii spektroskopowej jako metoda monitorowania jakości powierzchni materiałów grupy SrxBa1-xNb2O6. Przegląd Elektrotechniczny, 90(9), 22-25.

Google Scholar

[38] Aspnes, D. E. (1982). Optical properties of thin films. Thin solid films, 89(3), 249-262.

DOI: 10.1016/0040-6090(82)90590-9

Google Scholar

[39] Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999, 40, 4585–4592.

Google Scholar

[40] Yanilmaz, M.; Lu, Y.; Zhu, J.; Zhang, X. J. Power Sources 2016, 313, 205-212.

Google Scholar

[41] Jalalah, M.; Faisal, M.; Bouzid, H.; Park, J.; Al-Sayari, S. A.; Ismail, A. A. J. Ind. Eng. Chem. 2015, 30, 183-189.

Google Scholar

[42] Pankove J.I.(1971) Optical Processes in Semiconductors. New York, NY, U.S.A.: Prentice Hall.

Google Scholar

[43] Nirmala, R., Jeon, K., Navamathavan, R., Kim, B. S., Khil, M. S., & Kim, H. Y. (2013). Fabrication and characterization of II–VI semiconductor nanoparticles decorated electrospun polyacrylonitrile nanofibers. Journal of colloid and interface science, 397, 65-72.

DOI: 10.1016/j.jcis.2013.01.057

Google Scholar

[44] Tański, T., Matysiak, W., & Krzemiński, Ł. (2017). Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers. Materials and Manufacturing Processes, 32(11), 1218-1224.

DOI: 10.1080/10426914.2016.1257129

Google Scholar

[45] Nguyen, H. Q., & Deng, B. (2012). Electrospinning and in situ nitrogen doping of TiO 2/PAN nanofibers with photocatalytic activation in visible lights. Materials Letters, 82, 102-104.

DOI: 10.1016/j.matlet.2012.04.100

Google Scholar

[46] Tański, T., Matysiak, W., & Krzemiński, Ł. (2017). Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers. Materials and Manufacturing Processes, 32(11), 1218-1224.

DOI: 10.1080/10426914.2016.1257129

Google Scholar

[47] Hezam, A., Namratha, K., Drmosh, Q. A., Yamani, Z. H., & Byrappa, K. (2017). Synthesis of heterostructured Bi 2 O 3–CeO 2–ZnO photocatalyst with enhanced sunlight photocatalytic activity. Ceramics International, 43(6), 5292-5301.

DOI: 10.1016/j.ceramint.2017.01.059

Google Scholar

[48] Xu, X., Wang, M., Pei, Y., Ai, C., & Yuan, L. (2014). SiO 2@ Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Advances, 4(110), 64747-64755.

DOI: 10.1039/c4ra10843d

Google Scholar

[49] Swanepoel, R. (1984). Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. Journal of Physics E: Scientific Instruments, 17(10), 896.

DOI: 10.1088/0022-3735/17/10/023

Google Scholar