[1]
Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
DOI: 10.1016/s0032-3861(99)00068-3
Google Scholar
[2]
Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied physics, 87(9), 4531-4547.
DOI: 10.1063/1.373532
Google Scholar
[3]
Tripatanasuwan, S., Zhong, Z., & Reneker, D. H. (2007). Effect of evaporation and solidification of the charged jet in electrospinning of poly (ethylene oxide) aqueous solution. Polymer, 48(19), 5742-5746.
DOI: 10.1016/j.polymer.2007.07.045
Google Scholar
[4]
Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216.
DOI: 10.1088/0957-4484/7/3/009
Google Scholar
[5]
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160.
DOI: 10.1016/0304-3886(95)00041-8
Google Scholar
[6]
Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
DOI: 10.1016/s0032-3861(99)00068-3
Google Scholar
[7]
Kim, J. S., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer composites, 20(1), 124-131.
DOI: 10.1002/pc.10340
Google Scholar
[8]
Kim, J. S., & Reneker, D. H. (1999). Polybenzimidazole nanofiber produced by electrospinning. Polymer Engineering & Science, 39(5), 849-854.
DOI: 10.1002/pen.11473
Google Scholar
[9]
Srinivasan, G., & Reneker, D. H. (1995). Structure and morphology of small diameter electrospun aramid fibers. Polymer international, 36(2), 195-201.
DOI: 10.1002/pi.1995.210360210
Google Scholar
[10]
Fang, X. D. H. R., & Reneker, D. H. (1997). DNA fibers by electrospinning. Journal of Macromolecular Science, Part B: Physics, 36(2), 169-173.
DOI: 10.1080/00222349708220422
Google Scholar
[11]
Patil, R., Tsukruk, V. V., & Reneker, D. H. (1992). Molecular packing at surfaces of oriented polyimide fiber and film observed by atomic force microscopy. Polymer Bulletin, 29(5), 557-563.
DOI: 10.1007/bf00296718
Google Scholar
[12]
Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of applied physics, 89(5), 3018-3026.
DOI: 10.1063/1.1333035
Google Scholar
[13]
Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of applied physics, 90(9), 4836-4846. Newsome, T. E., & Olesik, S. V. (2014). Electrospinning silica/polyvinylpyrrolidone composite nanofibers. Journal of Applied Polymer Science, 131(21).
DOI: 10.1063/1.1408260
Google Scholar
[14]
Prahsarn, C., Klinsukhon, W., & Roungpaisan, N. (2011). Electrospinning of PAN/DMF/H 2 O containing TiO 2 and photocatalytic activity of their webs. Materials Letters, 65(15), 2498-2501.
DOI: 10.1016/j.matlet.2011.05.018
Google Scholar
[15]
Im, J. S., Kim, M. I., & Lee, Y. S. (2008). Preparation of PAN-based electrospun nanofiber webs containing TiO 2 for photocatalytic degradation. Materials Letters, 62(21), 3652-3655.
DOI: 10.1016/j.matlet.2008.04.019
Google Scholar
[16]
Jeun, J. P., Park, D. W., Seo, D. K., Kim, H. B., Nho, Y. C., & Kang, P. H. (2011). Enhancement of photocatalytic activity of pan-based nanofibers containing sol-gel-derived TiO2 nanoparticles by E-beam irradiation. Reviews on Advanced Materials Science, 28(1), 26-30.
Google Scholar
[17]
Ji, B. C., Bae, S. S., Rabbani, M. M., & Yeum, J. H. (2013). Photocatalytic Activity of Electrospun PAN/TiO₂ Nanofibers in Dye Photodecomposition. 한국염색가공학회지, 25(2), 94-101.
DOI: 10.5764/tcf.2013.25.2.94
Google Scholar
[18]
Ji, L., Saquing, C., Khan, S. A., & Zhang, X. (2008). Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology, 19(8), 085605.
DOI: 10.1088/0957-4484/19/8/085605
Google Scholar
[19]
Ji, L., & Zhang, X. (2008). Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters, 62(14), 2161-2164.
DOI: 10.1016/j.matlet.2007.11.051
Google Scholar
[20]
Ji, L., Lin, Z., Medford, A. J., & Zhang, X. (2009). Porous carbon nanofibers from electrospun polyacrylonitrile/SiO 2 composites as an energy storage material. Carbon, 47(14), 3346-3354.
DOI: 10.1016/j.carbon.2009.08.002
Google Scholar
[21]
Wang, N., Si, Y., Wang, N., Sun, G., El-Newehy, M., Al-Deyab, S. S., & Ding, B. (2014). Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separation and Purification Technology, 126, 44-51.
DOI: 10.1016/j.seppur.2014.02.017
Google Scholar
[22]
Leontie, L., Caraman, M., Delibaş, M., & Rusu, G. I. (2001). Optical properties of bismuth trioxide thin films. Materials Research Bulletin, 36(9), 1629-1637.
DOI: 10.1016/s0025-5408(01)00641-9
Google Scholar
[23]
Zhang, L., Hashimoto, Y., Taishi, T., Nakamura, I., & Ni, Q. Q. (2011). Fabrication of flower-shaped Bi 2 O 3 superstructure by a facile template-free process. Applied Surface Science, 257(15), 6577-6582.
DOI: 10.1016/j.apsusc.2011.02.081
Google Scholar
[24]
Nowak-Woźny, D., Janiczek, T., Mielcarek, W., & Gajewski, J. B. (2009). Fractional electrical model for modified bismuth oxide. Journal of Electrostatics, 67(1), 18-21.
DOI: 10.1016/j.elstat.2008.10.001
Google Scholar
[25]
Wang, Y., Zhao, J., & Wang, Z. (2011). A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1), 409-413.
DOI: 10.1016/j.colsurfa.2011.01.038
Google Scholar
[26]
An, T., Pant, B., Kim, S. Y., Park, M., Park, S. J., & Kim, H. Y. (2017). Mechanical and optical properties of electrospun nylon-6, 6 nanofiber reinforced cyclic butylene terephthalate composites. Journal of Industrial and Engineering Chemistry, 55, 35-39.
DOI: 10.1016/j.jiec.2017.06.044
Google Scholar
[27]
Li, B., Pan, S., Yuan, H., & Zhang, Y. (2016). Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites. Composites Part A: Applied Science and Manufacturing, 90, 380-389.
DOI: 10.1016/j.compositesa.2016.07.024
Google Scholar
[28]
Barakat, N. A., Khil, M. S., Sheikh, F. A., & Kim, H. Y. (2008). Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. The Journal of Physical Chemistry C, 112(32), 12225-12233.
DOI: 10.1021/jp8027353
Google Scholar
[29]
Chuangchote, S., Sagawa, T., & Yoshikawa, S. (2008). Fabrication and optical properties of electrospun conductive polymer nanofibers from blended polymer solution. Japanese Journal of Applied Physics, 47(1S), 787.
DOI: 10.1143/jjap.47.787
Google Scholar
[30]
Weng, S., Lin, Z., Chen, L., & Zhou, J. (2010). Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochimica Acta, 55(8), 2727-2733.
DOI: 10.1016/j.electacta.2009.12.032
Google Scholar
[31]
Wannapop, S., Thongtem, T., & Thongtem, S. (2012). Photoemission and energy gap of MgWO 4 particles connecting as nanofibers synthesized by electrospinning–calcination combinations. Applied Surface Science, 258(11), 4971-4976.
DOI: 10.1016/j.apsusc.2012.01.133
Google Scholar
[32]
Ren, Z., Jing, G., Liu, Y., Gao, J., Xiao, Z., Liu, Z., ... & Shen, G. (2013). Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 3(16), 5453-5458.
DOI: 10.1039/c3ra23413d
Google Scholar
[33]
Wang, Y., Ramos, I., & Santiago-Avilés, J. J. (2007). Optical bandgap and photoconductance of electrospun tin oxide nanofibers. Journal of Applied Physics, 102(9), 093517.
DOI: 10.1063/1.2800261
Google Scholar
[34]
Wang, C., Shao, C., Wang, L., Zhang, L., Li, X., & Liu, Y. (2009). Electrospinning preparation, characterization and photocatalytic properties of Bi 2 O 3 nanofibers. Journal of colloid and interface science, 333(1), 242-248.
DOI: 10.1016/j.jcis.2008.12.077
Google Scholar
[35]
Viter, R., Katoch, A., & Kim, S. S. (2014). Grain size dependent bandgap shift of SnO2 nanofibers. Metals and Materials International, 20(1), 163.
DOI: 10.1007/s12540-013-6027-6
Google Scholar
[36]
Galos, R., Shi, Y., Ren, Z., Synowicki, R., Sun, H., Nykypanchuk, D., & Yuan, J. (2017). The dielectric constant of PZT nanofiber at visible and NIR wavelengths. Nano-Structures & Nano-Objects.
DOI: 10.1016/j.nanoso.2017.10.001
Google Scholar
[37]
Dorywalski, K., & Patryn, A. (2014). Technika elipsometrii spektroskopowej jako metoda monitorowania jakości powierzchni materiałów grupy SrxBa1-xNb2O6. Przegląd Elektrotechniczny, 90(9), 22-25.
Google Scholar
[38]
Aspnes, D. E. (1982). Optical properties of thin films. Thin solid films, 89(3), 249-262.
DOI: 10.1016/0040-6090(82)90590-9
Google Scholar
[39]
Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999, 40, 4585–4592.
Google Scholar
[40]
Yanilmaz, M.; Lu, Y.; Zhu, J.; Zhang, X. J. Power Sources 2016, 313, 205-212.
Google Scholar
[41]
Jalalah, M.; Faisal, M.; Bouzid, H.; Park, J.; Al-Sayari, S. A.; Ismail, A. A. J. Ind. Eng. Chem. 2015, 30, 183-189.
Google Scholar
[42]
Pankove J.I.(1971) Optical Processes in Semiconductors. New York, NY, U.S.A.: Prentice Hall.
Google Scholar
[43]
Nirmala, R., Jeon, K., Navamathavan, R., Kim, B. S., Khil, M. S., & Kim, H. Y. (2013). Fabrication and characterization of II–VI semiconductor nanoparticles decorated electrospun polyacrylonitrile nanofibers. Journal of colloid and interface science, 397, 65-72.
DOI: 10.1016/j.jcis.2013.01.057
Google Scholar
[44]
Tański, T., Matysiak, W., & Krzemiński, Ł. (2017). Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers. Materials and Manufacturing Processes, 32(11), 1218-1224.
DOI: 10.1080/10426914.2016.1257129
Google Scholar
[45]
Nguyen, H. Q., & Deng, B. (2012). Electrospinning and in situ nitrogen doping of TiO 2/PAN nanofibers with photocatalytic activation in visible lights. Materials Letters, 82, 102-104.
DOI: 10.1016/j.matlet.2012.04.100
Google Scholar
[46]
Tański, T., Matysiak, W., & Krzemiński, Ł. (2017). Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers. Materials and Manufacturing Processes, 32(11), 1218-1224.
DOI: 10.1080/10426914.2016.1257129
Google Scholar
[47]
Hezam, A., Namratha, K., Drmosh, Q. A., Yamani, Z. H., & Byrappa, K. (2017). Synthesis of heterostructured Bi 2 O 3–CeO 2–ZnO photocatalyst with enhanced sunlight photocatalytic activity. Ceramics International, 43(6), 5292-5301.
DOI: 10.1016/j.ceramint.2017.01.059
Google Scholar
[48]
Xu, X., Wang, M., Pei, Y., Ai, C., & Yuan, L. (2014). SiO 2@ Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Advances, 4(110), 64747-64755.
DOI: 10.1039/c4ra10843d
Google Scholar
[49]
Swanepoel, R. (1984). Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. Journal of Physics E: Scientific Instruments, 17(10), 896.
DOI: 10.1088/0022-3735/17/10/023
Google Scholar