Various Applications of Multifunctional Thin Films with Specific Properties Deposited by the ALD Method

Article Preview

Abstract:

This paper presents application examples of atomic layer deposition method (ALD) adopted for production of multifunctional thin films for various usage such as passive, antireflection and transparent conductive films. First part of this paper introduces the mechanism of ALD process, in the rest of it, aluminum oxide (as passive and antireflection) and zinc oxide (as antireflection and transparent conductive) ALD thin films are presented. In the literature one can find reports on the use of the Al2O3 layer as passivating and ZnO layers as a transparent conductive oxide in diodes, polymeric and dye sensitized solar cells. In this article, the ALD layers were tested for their use in silicon solar cells, using their good electrical and optical properties. For examination of prepared thin films characteristics, following research methods were used: scanning electron microscope, atomic force microscope, X-ray diffractometer, ellipsometer, UV/VIS spectrometer and resistance measurements. By depositing a layer thickness of about 80 nm, the short-circuit current on the surface of the solar cell was increased three times while reducing the reflection of light. In turn, by changing the deposition temperature of the ZnO thin film, you can control its electrical properties while maintaining high transparency. The obtained results showed that the ALD method provide the ability to produce a high quality multifunctional thin films with the required properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 293)

Pages:

111-123

Citation:

Online since:

July 2019

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Pinna, M. Knez, Atomic Layer Deposition of Nanostructured Materials, Wiley-VCH, Weinheim (2012).

Google Scholar

[2] A.C. Jones, M.L. Hitchman, Chemical Vapour Deposition 'Precursors, Processes and Applications, The Royal Society of Chemistry, United Kingdom (2009).

Google Scholar

[3] H.S. Nalwa, Handbook of thin film materials Vol. 1, Deposition and processing of thin films, Academic Press, San Diego (2002).

Google Scholar

[4] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multicrystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201/1 (2008) 291-296.

DOI: 10.1016/j.jmatprotec.2007.11.278

Google Scholar

[5] L.A. Dobrzański, M. Szindler, Sol-gel and ALD antireflection coatings for silicon solar cells, Electronics 53/8 (2012) 125-127.

Google Scholar

[6] J. Weszka, M.M. Szindler, M. Chwastek-Ogierman, M. Bruma, P. Jarka, B. Tomiczek, Surface morphology of thin films polyoxadiazoles, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 224-232.

Google Scholar

[7] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Central European Journal of Physics 12/9 (2014) 666–670.

DOI: 10.2478/s11534-014-0500-9

Google Scholar

[8] H.M. Ali, H.A. Mohamed, S.H. Mohamed, Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique, The European Physical Journal Applied Physics 31 (2005)87-93.

DOI: 10.1051/epjap:2005044

Google Scholar

[9] L. Wei, C. Shuying, Photoelectric properties of ITO thin films deposited by DC magnetron sputtering, Journal of Semiconductors 32/1 (2011) 013002.

DOI: 10.1088/1674-4926/32/1/013002

Google Scholar

[10] M. Oshima, K. Yoshino, Characteristic of low resistivity fluorine-doped SnO2 thin films grown by spray pyrolysis, Japanese Journal of Applied Physics 50/5S2 (2011) 05FB15.

DOI: 10.1143/jjap.50.05fb15

Google Scholar

[11] K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide, Springer, Berlin (2008).

Google Scholar

[12] T. Tynell, M. Karppinen, Atomic layer deposition of ZnO, A review, Semiconductor Science and Technology 29 (2014) 043001.

DOI: 10.1088/0268-1242/29/4/043001

Google Scholar

[13] P.M. Martin (ed.), Handbook of deposition technologies for films and coatings - science, applications and technology, Elsevier Inc., USA (2010).

Google Scholar

[14] F. Li, L. Li, X. Liaoa, Y. Wanga, Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique, Journal of Membrane Science 385-386 (2011) 1-9.

DOI: 10.1016/j.memsci.2011.06.042

Google Scholar

[15] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans, R. Mertens, Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells, Solar Energy Materials & Solar Cells 101 (2012) 204–209.

DOI: 10.1016/j.solmat.2012.01.032

Google Scholar

[16] R. Escudero and R. Escamilla, Ferromagnetic behavior of high-purity ZnO nanoparticles , Solid State Communications 151/2 (2011) 97–101.

DOI: 10.1016/j.ssc.2010.11.019

Google Scholar

[17] J. Laube, D. Nübling, H. Beh, S. Gutsch, D. Hiller and M. Zacharias, Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing, Thin Solid Films 603 (2016) 377-381.

DOI: 10.1016/j.tsf.2016.02.060

Google Scholar

[18] M.S. Farhan, E. Zalnezhad, A.R. Bushroa, A.A. D. Sarhan, Electrical and Optical Properties of Indium-tin Oxide (ITO) Films by Ion-Assisted Deposition (IAD) at Room Temperature, International Journal of Precision Engineering and Manufacturing 2, 14/8 (2013) 1465-1469.

DOI: 10.1007/s12541-013-0197-5

Google Scholar

[19] M.M. Ristova, A. Gligorova, I. Nasov, D. Gracin, M. Milun, H. Kostadinova-Boskova, R. Popeski-Dimovski, TiO2 Coating for SnO2: F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to H+ Radical Exposure, Journal of Electronic Materials, 41/11 (2012) 3087-3094.

DOI: 10.1007/s11664-012-2221-4

Google Scholar

[20] Z. Baji, Z. Lábadi, G. Molnár, B. Pécz, K. Vad, Z.E. Horváth, P.J. Szabó, T. Nagata, J. Volk, Highly conductive epitaxial ZnO layers deposited by atomic layer deposition, Thin Solid Films 562 (2014) 485-489.

DOI: 10.1016/j.tsf.2014.04.047

Google Scholar

[21] A. Illiberi, F. Roozeboom, P. Poodt, Spatial atomic layer deposition of zinc oxide thin films, Applied Materials & Interfaces 4/1 (2012) 268–272.

DOI: 10.1021/am2013097

Google Scholar

[22] E. Guziewicz, M. Godlewski, T.A. Krajewski, Ł. Wachnicki, G. Łuka, W. Paszkowicz, J.Z. Domagała, E. Przeździecka, E. Łusakowska, ZnO by ALD — Advantages of the Material Grown at Low Temperature, Acta Physica Polonica A, 116 (2009) 814-817.

DOI: 10.12693/aphyspola.116.814

Google Scholar

[23] Y.S. Min, C.J. An, S.K. Kim, J. Song, C.S. Hwang, Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition, Bulletin of the Korean Chemical Society, 31 (2010) 2503-2508.

DOI: 10.5012/bkcs.2010.31.9.2503

Google Scholar

[24] A. Ismail, M.J. Abdullah, The structural and optical properties of ZnO thin films prepared at different RF sputtering power, Journal of King Saud University – Science, 25/3 (2013) 209–215.

DOI: 10.1016/j.jksus.2012.12.004

Google Scholar

[25] E. Przeździecka, Ł. Wachnicki, W. Paszkowicz, E. Łusakowska, T. Krajewski, G. Łuka, E. Guziewicz, M. Godlewski, Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature, Semicond. Sci. Technol. 24 (2009) 105014.

DOI: 10.1088/0268-1242/24/10/105014

Google Scholar

[26] V.V. Strelchuk, K.A. Avramenko, A.S. Romaniuk, L.V. Zavyalova, G.S. Svechnikov, V.S. Khomchenko, N.M. Roshchina, V.M. Tkach, Structural and optical properties of ZnO films produced by a nonvacuum chemical technique, Semiconductors, 48/9 (2014) 1145-1150.

DOI: 10.1134/s106378261409019x

Google Scholar