[1]
K. Labisz, Structure and properties of the casting surfaces Al-Si-Cu, Open Access Library 5(23) (2013) 1-152 (in Polish).
Google Scholar
[2]
A. Białobrzeski, E. Czekaj, M. Heller, Corrosion properties of aluminum and magnesium alloys processed by pressure die casting technology, Archives of Foundry 2 (2002) 294-313 (in Polish).
Google Scholar
[3]
K. Przybyłowicz, Metaloznawstwo, WNT, Warszawa, 2007 (in Polish).
Google Scholar
[4]
T. Tański, M. Wiśniowski, W. Matysiak, M. Staszuk, R. Szklarek, Surface treatment of heat-treated cast magnesium and aluminium alloys, Materials and Technology 50 (2016) 699-706.
DOI: 10.17222/mit.2015.132
Google Scholar
[5]
Editor: Professor Andrew Yeh-Ching Nee, Authors: Leszek A. Dobrzański, Daniel Pakuła, Marcin Staszuk, Handbook of Manufacturing Engineering and Technology , The title of the chapter, Chemical Vapor Deposition in Manufacturing, Springer 2014, Article ID: 331443 • Chapter ID: 30.
DOI: 10.1007/978-1-4471-4670-4_30
Google Scholar
[6]
C.X. Shan, Xianghui Hou, Kwang-Leong Choy: Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition, Surface & Coatings Technology 202 (2008) 2399-2402.
DOI: 10.1016/j.surfcoat.2007.08.066
Google Scholar
[7]
M. Basiaga, W. Walke, M. Staszuk, W. Kajzer, A. Kajzer, K. Nowińska, Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents, Archives of Civil and Mechanical Engineering 17 (2017) 32-42.
DOI: 10.1016/j.acme.2016.08.001
Google Scholar
[8]
B. Díaz, E. Härkönen, J. Światowska, A. Seyeux, V. Maurice, M. Ritala, P. Marcus, Corrosion properties of steel protected by nanometre-thick oxide coatings, Corrosion Science 82 (2014) 208-217.
DOI: 10.1016/j.corsci.2014.01.024
Google Scholar
[9]
M. Fedel, F. Deflorian, Electrochemical characterization of atomic layer deposited Al2O3 coatings on AISI 316L stainless steel, Electrochimica Acta 203 (2016) 404-415.
DOI: 10.1016/j.electacta.2016.02.107
Google Scholar
[10]
E. Marin, L. Guzman, A. Lanzutti, W. Ensinger, L. Fedrizzi, Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel, Thin Solid Films 522 (2012) 283-288.
DOI: 10.1016/j.tsf.2012.08.023
Google Scholar
[11]
W Walke, M. Kaczmarek, M. Staszuk, M. Basiaga, Influence of purge, time of waiting and TiCl4 dosing time in a low-pressure atomic layer deposition (ALD) reactor on properties of TiO2 layer, Metalurgija 56(1-2) (2017) 179-181.
Google Scholar
[12]
M. Basiaga, M. Staszuk, W. Walke, T. Tański, W. Kajzer, Potentiostatic, potentiodynamic and impedance study of TiO2 layers deposited of 316 LVM steel used for coronary stents, Archives of Metallurgy and Materials 61(2) (2016) 821-824.
DOI: 10.1515/amm-2016-0138
Google Scholar
[13]
L. Aarika, J. Kozlova, H. Mändar, J. Aarik, V. Sammelselg, Chemical resistance of TiO2 and Al2O3 single-layer and multilayer coatings atomic layer deposited from hydrogen-free precursors on silicon and stainless steel, Materials Chemistry and Physics 228 (2019) 285-292.
DOI: 10.1016/j.matchemphys.2019.02.053
Google Scholar
[14]
S. Mirhashemihaghighi, J. Światowska, V. Maurice, A. Seyeux, S. Zanna, E. Salmi, M. Ritala, P. Marcusa, Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings, Corrosion Science 106 (2016) 16-24.
DOI: 10.1016/j.corsci.2016.01.021
Google Scholar