[1]
T.W. Scharf, S.V. Prasad, Solid lubricants: a review, J. Mater. Sci. 48 (2013) 511-531.
Google Scholar
[2]
R.F.C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review, Surf. Coat. Tech. 228 (2013) 1-13.
DOI: 10.1016/j.surfcoat.2013.04.034
Google Scholar
[3]
L. Wu, X. Guo, J. Zhang, Abrasive Resistant Coatings - A Review, Lubricants 2 (2014) 66-89.
Google Scholar
[4]
W. Poprawski, Biodegradowalne smary w zastosowaniu do węzłów łożyskowych elementów wykonawczych maszyn roboczych, Inżynieria Maszyn 19 (2014) 99-107.
Google Scholar
[5]
C. Donnet, A. Erdemir, Solid lubricant coatings: recent developments and future trends, Tribol. Lett. 17 (2004) 389-397.
DOI: 10.1023/b:tril.0000044487.32514.1d
Google Scholar
[6]
O. Wilhelmsson, M. Råsander, M. Carlsson, E.Lewin, B. Sanyal, U. Wiklund, O. Eriksson, U. Jansson, Design of Nanocomposite Low-Friction Coatings, Adv. Funct. Mater. 17 (2007) 1611–1616.
DOI: 10.1002/adfm.200600724
Google Scholar
[7]
A. Abinaya, B.G. Jeyaprakash, Structural, surface and mechanical characterization of spray-deposited molybdenum disulfide thin films, Mat. Sci. Semicon. Proc. 31 (2015) 582-587.
DOI: 10.1016/j.mssp.2014.12.045
Google Scholar
[8]
J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (4-6) (2002) 127-281.
Google Scholar
[9]
J. Shi, Z. Gong, C. Wang, B. Zhang, J. Zhang, Tribological properties of hydrogenated amorphous carbon films in different atmospheres, Diam. Relat. Mater. 77 (2017) 84-91.
DOI: 10.1016/j.diamond.2017.06.005
Google Scholar
[10]
A. Paradecka, K. Lukaszkowicz, J. Sondor, M. Pancielejko, Structure and tribological properties of MoS2 low friction thin films, ITM Web of Conferences II International Conference of Computational Methods in Engineering Science (CMES'17) 15 (2017) 06008.
DOI: 10.1051/itmconf/20171506008
Google Scholar
[11]
B. Vierneusel, T. Schneider, S. Tremmel, S. Wartzack, T. Gradt, Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering, Surf. Coat. Tech. 235 (2013) 97-107.
DOI: 10.1016/j.surfcoat.2013.07.019
Google Scholar
[12]
X. Liu, L. Wang, Z. Lu, Q. Xue, Vacuum tribological performance of DLC-based solid–liquid lubricating coatings: Influence of sliding mating materials, Wear 292–293 (2012) 124-134.
DOI: 10.1016/j.wear.2012.05.023
Google Scholar
[13]
C. Donnet, Advanced solid lubricant coatings for high vacuum environments, Surf. Coat. Tech. 80 (1996) 151-156.
DOI: 10.1016/0257-8972(95)02702-5
Google Scholar
[14]
K. Bewilogua, D. Hofmann, History of diamond-like carbon films - from first experiments to worldwide applications, Surf. Coat. Tech. 242 (2014) 214-225.
DOI: 10.1016/j.surfcoat.2014.01.031
Google Scholar
[15]
A. Erdemir, J.M. Martin, Superior wear resistance of diamond and DLC coatings, Curr. Opin. Solid. St. M. 22 (2018) 243-254.
DOI: 10.1016/j.cossms.2018.11.003
Google Scholar
[16]
A. Paradecka, K. Lukaszkowicz, M. Pawlyta, Structure and tribological properties of DLC:Si/AlCrN low friction thin film, MATEC Web Conf. III International Conference of Computational Methods in Engineering Science (CMES'18) 252 (2019) 08002.
DOI: 10.1051/matecconf/201925208002
Google Scholar
[17]
R. Crombez, J. McMinis, V.S. Veerasmamy, W. Shen, Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass, Tribol. Int. 44 (2011) 55-62.
DOI: 10.1016/j.triboint.2010.11.001
Google Scholar
[18]
J. Vetter, 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications, Surf. Coat. Tech. 257 (2014) 213 – 240.
DOI: 10.1016/j.surfcoat.2014.08.017
Google Scholar
[19]
T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarim, Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71 (1997) 3820-3822.
DOI: 10.1063/1.120515
Google Scholar
[20]
M. Kalin, J. Vižintin, The tribological performance of DLC coatings under oil-lubricated fretting conditions, Tribol. Int. 39 (2006) 1060-1067.
DOI: 10.1016/j.triboint.2006.02.040
Google Scholar
[21]
B. Warcholiński A. Gilewicz Z. Kukliński P. Myśliński, Arc-evaporated CrN, CrN and CrCN coatings, Vacuum 83 (2008) 715-718.
DOI: 10.1016/j.vacuum.2008.05.005
Google Scholar
[22]
Q. Wang, F. Zhou, Z. Zhou, L. Kwok-Yan Li, J. Yan, Influence of carbon concentration on the electrochemical behavior of CrCN coatings in simulated body fluid, Surf. Coat. Tech. 265 (2015) 16-23.
DOI: 10.1016/j.surfcoat.2015.01.068
Google Scholar
[23]
J.J. Guan, H.Q. Wang, L.Z. Qin, B. Liao, H. Liang, B. Li, Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition, Nucl. Instrum. Meth. B. 397 (2017) 86-91.
DOI: 10.1016/j.nimb.2017.02.037
Google Scholar
[24]
Z.L. Wu, J. Lin, J.J. Moore, M.K. Lei, Microstructure, mechanical and tribological properties of Cr–C–N coatings deposited by pulsed closed field unbalanced magnetron sputtering, Surf. Coat. Tech. 204 (2009) 931-935.
DOI: 10.1016/j.surfcoat.2009.04.032
Google Scholar
[25]
E. Young Choi, M. Chang Kang, D. Hee Kwon, D. Woo Shin, K. Ho Kima, Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings, J. Mater. Process. Tech. 187–188 (2007) 566–570.
DOI: 10.1016/j.jmatprotec.2006.11.090
Google Scholar
[26]
A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – A review, Mater. Design. 67 (2015) 95-106.
DOI: 10.1016/j.matdes.2014.10.081
Google Scholar
[27]
P.K. Ajikumar, M. Vijayakumar, M. Kamruddin, S. Kalavathi, N. Kumar, T.R. Ravindran, A.K. Tyagi, Effect of reactive gas composition on the microstructure, growth mechanism and friction coefficient of TiC overlayers, Int. J. Refract. Met. H. 31 (2012) 62-70.
DOI: 10.1016/j.ijrmhm.2011.09.007
Google Scholar
[28]
J. Tang, L. Feng, J.S. Zabinski, The effects of metal interlayer insertion on the friction, wear and adhesion of TiC coatings, Surf. Coat. Tech. 99 (1998) 242-247.
DOI: 10.1016/s0257-8972(97)00570-7
Google Scholar
[29]
K. Konefa, M. Korzynski, Z. Byczkowska, K. Korzynska, Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing, J. Mater. Process. Tech. 230 (2013) 1997-2004.
DOI: 10.1016/j.jmatprotec.2013.05.021
Google Scholar
[30]
E.Strmčnik, F.Majdič, M. Kalin, Water-lubricated behaviour of AISI 440C stainless steel and a DLC coating for an orbital hydraulic motor application, Tribol. Int. 131 (2019) 128-136.
DOI: 10.1016/j.triboint.2018.10.032
Google Scholar
[31]
P. Kumar Singh, A. Kumar, S. Kumar Sinha, A. Aggarwa, G. Prasad Sing, Improvement in surface properties with TiN thin film coating on plasma nitride austenitic 316 stainless steel, International Journal of Engineering and Technology (IJET) 8 (2016) 350 -356.
Google Scholar
[32]
A. Amanov, T. Watabe, R. Tsuboi, S. Sasaki, Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures, Surf. Coat. Tech. 232 (2013) 549-560.
DOI: 10.1016/j.surfcoat.2013.06.027
Google Scholar
[33]
B. Warcholinski, A. Gilewicz, Effect of substrate bias voltage on the properties of CrCN and CrN coatings deposited by cathodic arc evaporation, Vacuum 90 (2013) 145-150.
DOI: 10.1016/j.vacuum.2012.04.039
Google Scholar
[34]
Y. Ye, Y. Wang, H. Chen, J. Li, Y. Yao, C. Wang, Doping carbon to improve the tribological performance of CrN coatings in seawater, Tribol. Int. 90 (2015) 362-371.
DOI: 10.1016/j.triboint.2015.04.008
Google Scholar
[35]
T. Polcar, L. Cvrček, P. Široký, R. Novák, Tribological characteristics of CrCN coatings at elevated temperaturę, Vacuum 80 (2005) 113-116.
DOI: 10.1016/j.vacuum.2005.07.033
Google Scholar
[36]
C.A. Charitidis, Nanomechanical and nanotribological properties of carbon-based thin films: A review, Int. J. Refract. Met. H. 28 (2010) 51-70.
Google Scholar
[37]
P. Wang, W. Yue, Z. Lu, G. Zhang, L. Zhu, Friction and wear properties of MoS2-based coatings sliding against Cu and Al under electric current, Tribol. Int. 127 (2018) 379-388.
DOI: 10.1016/j.triboint.2018.06.028
Google Scholar
[38]
R. Câmara Cozza, A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests, Surf. Coat. Tech. 215 (2013) 224-233.
DOI: 10.1016/j.surfcoat.2012.06.088
Google Scholar