Assessment of Tribological Properties of Low Friction Thin Layers Produced by Vacuum Methods

Article Preview

Abstract:

Low friction thin layers are an excellent alternative for conventional coatings. They provide increased life of the elements, to which they were applied, due to enhancing the hardness or chemical and electrochemical resistance. They help to avoid the cracks, oxidation, as well as possible structural changes during the element's work. However, they primarily improve tribological properties by increasing wear resistance and reducing the friction. This also applies to components operating under variable conditions such as load, speed, temperature. The presented article analyzes the properties of various low-friction thin layers deposited by vacuum methods on the steel substrates. DLC, TiC, MoS2, CrCN thin layers were chosen, as they achieve the lowest possible coefficient of friction. In the framework of this work the measurements of adhesion of the investigated layers to the substrate as well as the friction coefficient, chemical analysis, microstructure and topographic analysis of the low-friction layers were carried out.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 293)

Pages:

125-140

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.W. Scharf, S.V. Prasad, Solid lubricants: a review, J. Mater. Sci. 48 (2013) 511-531.

Google Scholar

[2] R.F.C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review, Surf. Coat. Tech. 228 (2013) 1-13.

DOI: 10.1016/j.surfcoat.2013.04.034

Google Scholar

[3] L. Wu, X. Guo, J. Zhang, Abrasive Resistant Coatings - A Review, Lubricants 2 (2014) 66-89.

Google Scholar

[4] W. Poprawski, Biodegradowalne smary w zastosowaniu do węzłów łożyskowych elementów wykonawczych maszyn roboczych, Inżynieria Maszyn 19 (2014) 99-107.

Google Scholar

[5] C. Donnet, A. Erdemir, Solid lubricant coatings: recent developments and future trends, Tribol. Lett. 17 (2004) 389-397.

DOI: 10.1023/b:tril.0000044487.32514.1d

Google Scholar

[6] O. Wilhelmsson, M. Råsander, M. Carlsson, E.Lewin, B. Sanyal, U. Wiklund, O. Eriksson, U. Jansson, Design of Nanocomposite Low-Friction Coatings, Adv. Funct. Mater. 17 (2007) 1611–1616.

DOI: 10.1002/adfm.200600724

Google Scholar

[7] A. Abinaya, B.G. Jeyaprakash, Structural, surface and mechanical characterization of spray-deposited molybdenum disulfide thin films, Mat. Sci. Semicon. Proc. 31 (2015) 582-587.

DOI: 10.1016/j.mssp.2014.12.045

Google Scholar

[8] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (4-6) (2002) 127-281.

Google Scholar

[9] J. Shi, Z. Gong, C. Wang, B. Zhang, J. Zhang, Tribological properties of hydrogenated amorphous carbon films in different atmospheres, Diam. Relat. Mater. 77 (2017) 84-91.

DOI: 10.1016/j.diamond.2017.06.005

Google Scholar

[10] A. Paradecka, K. Lukaszkowicz, J. Sondor, M. Pancielejko, Structure and tribological properties of MoS2 low friction thin films, ITM Web of Conferences II International Conference of Computational Methods in Engineering Science (CMES'17) 15 (2017) 06008.

DOI: 10.1051/itmconf/20171506008

Google Scholar

[11] B. Vierneusel, T. Schneider, S. Tremmel, S. Wartzack, T. Gradt, Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering, Surf. Coat. Tech. 235 (2013) 97-107.

DOI: 10.1016/j.surfcoat.2013.07.019

Google Scholar

[12] X. Liu, L. Wang, Z. Lu, Q. Xue, Vacuum tribological performance of DLC-based solid–liquid lubricating coatings: Influence of sliding mating materials, Wear 292–293 (2012) 124-134.

DOI: 10.1016/j.wear.2012.05.023

Google Scholar

[13] C. Donnet, Advanced solid lubricant coatings for high vacuum environments, Surf. Coat. Tech. 80 (1996) 151-156.

DOI: 10.1016/0257-8972(95)02702-5

Google Scholar

[14] K. Bewilogua, D. Hofmann, History of diamond-like carbon films - from first experiments to worldwide applications, Surf. Coat. Tech. 242 (2014) 214-225.

DOI: 10.1016/j.surfcoat.2014.01.031

Google Scholar

[15] A. Erdemir, J.M. Martin, Superior wear resistance of diamond and DLC coatings, Curr. Opin. Solid. St. M. 22 (2018) 243-254.

DOI: 10.1016/j.cossms.2018.11.003

Google Scholar

[16] A. Paradecka, K. Lukaszkowicz, M. Pawlyta, Structure and tribological properties of DLC:Si/AlCrN low friction thin film, MATEC Web Conf. III International Conference of Computational Methods in Engineering Science (CMES'18) 252 (2019) 08002.

DOI: 10.1051/matecconf/201925208002

Google Scholar

[17] R. Crombez, J. McMinis, V.S. Veerasmamy, W. Shen, Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass, Tribol. Int. 44 (2011) 55-62.

DOI: 10.1016/j.triboint.2010.11.001

Google Scholar

[18] J. Vetter, 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications, Surf. Coat. Tech. 257 (2014) 213 – 240.

DOI: 10.1016/j.surfcoat.2014.08.017

Google Scholar

[19] T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarim, Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71 (1997) 3820-3822.

DOI: 10.1063/1.120515

Google Scholar

[20] M. Kalin, J. Vižintin, The tribological performance of DLC coatings under oil-lubricated fretting conditions, Tribol. Int. 39 (2006) 1060-1067.

DOI: 10.1016/j.triboint.2006.02.040

Google Scholar

[21] B. Warcholiński A. Gilewicz Z. Kukliński P. Myśliński, Arc-evaporated CrN, CrN and CrCN coatings, Vacuum 83 (2008) 715-718.

DOI: 10.1016/j.vacuum.2008.05.005

Google Scholar

[22] Q. Wang, F. Zhou, Z. Zhou, L. Kwok-Yan Li, J. Yan, Influence of carbon concentration on the electrochemical behavior of CrCN coatings in simulated body fluid, Surf. Coat. Tech. 265 (2015) 16-23.

DOI: 10.1016/j.surfcoat.2015.01.068

Google Scholar

[23] J.J. Guan, H.Q. Wang, L.Z. Qin, B. Liao, H. Liang, B. Li, Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition, Nucl. Instrum. Meth. B. 397 (2017) 86-91.

DOI: 10.1016/j.nimb.2017.02.037

Google Scholar

[24] Z.L. Wu, J. Lin, J.J. Moore, M.K. Lei, Microstructure, mechanical and tribological properties of Cr–C–N coatings deposited by pulsed closed field unbalanced magnetron sputtering, Surf. Coat. Tech. 204 (2009) 931-935.

DOI: 10.1016/j.surfcoat.2009.04.032

Google Scholar

[25] E. Young Choi, M. Chang Kang, D. Hee Kwon, D. Woo Shin, K. Ho Kima, Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings, J. Mater. Process. Tech. 187–188 (2007) 566–570.

DOI: 10.1016/j.jmatprotec.2006.11.090

Google Scholar

[26] A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – A review, Mater. Design. 67 (2015) 95-106.

DOI: 10.1016/j.matdes.2014.10.081

Google Scholar

[27] P.K. Ajikumar, M. Vijayakumar, M. Kamruddin, S. Kalavathi, N. Kumar, T.R. Ravindran, A.K. Tyagi, Effect of reactive gas composition on the microstructure, growth mechanism and friction coefficient of TiC overlayers, Int. J. Refract. Met. H. 31 (2012) 62-70.

DOI: 10.1016/j.ijrmhm.2011.09.007

Google Scholar

[28] J. Tang, L. Feng, J.S. Zabinski, The effects of metal interlayer insertion on the friction, wear and adhesion of TiC coatings, Surf. Coat. Tech. 99 (1998) 242-247.

DOI: 10.1016/s0257-8972(97)00570-7

Google Scholar

[29] K. Konefa, M. Korzynski, Z. Byczkowska, K. Korzynska, Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing, J. Mater. Process. Tech. 230 (2013) 1997-2004.

DOI: 10.1016/j.jmatprotec.2013.05.021

Google Scholar

[30] E.Strmčnik, F.Majdič, M. Kalin, Water-lubricated behaviour of AISI 440C stainless steel and a DLC coating for an orbital hydraulic motor application, Tribol. Int. 131 (2019) 128-136.

DOI: 10.1016/j.triboint.2018.10.032

Google Scholar

[31] P. Kumar Singh, A. Kumar, S. Kumar Sinha, A. Aggarwa, G. Prasad Sing, Improvement in surface properties with TiN thin film coating on plasma nitride austenitic 316 stainless steel, International Journal of Engineering and Technology (IJET) 8 (2016) 350 -356.

Google Scholar

[32] A. Amanov, T. Watabe, R. Tsuboi, S. Sasaki, Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures, Surf. Coat. Tech. 232 (2013) 549-560.

DOI: 10.1016/j.surfcoat.2013.06.027

Google Scholar

[33] B. Warcholinski, A. Gilewicz, Effect of substrate bias voltage on the properties of CrCN and CrN coatings deposited by cathodic arc evaporation, Vacuum 90 (2013) 145-150.

DOI: 10.1016/j.vacuum.2012.04.039

Google Scholar

[34] Y. Ye, Y. Wang, H. Chen, J. Li, Y. Yao, C. Wang, Doping carbon to improve the tribological performance of CrN coatings in seawater, Tribol. Int. 90 (2015) 362-371.

DOI: 10.1016/j.triboint.2015.04.008

Google Scholar

[35] T. Polcar, L. Cvrček, P. Široký, R. Novák, Tribological characteristics of CrCN coatings at elevated temperaturę, Vacuum 80 (2005) 113-116.

DOI: 10.1016/j.vacuum.2005.07.033

Google Scholar

[36] C.A. Charitidis, Nanomechanical and nanotribological properties of carbon-based thin films: A review, Int. J. Refract. Met. H. 28 (2010) 51-70.

Google Scholar

[37] P. Wang, W. Yue, Z. Lu, G. Zhang, L. Zhu, Friction and wear properties of MoS2-based coatings sliding against Cu and Al under electric current, Tribol. Int. 127 (2018) 379-388.

DOI: 10.1016/j.triboint.2018.06.028

Google Scholar

[38] R. Câmara Cozza, A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests, Surf. Coat. Tech. 215 (2013) 224-233.

DOI: 10.1016/j.surfcoat.2012.06.088

Google Scholar