Electrospinning as a Versatile Method of Composite Thin Films Fabrication for Selected Applications

Article Preview

Abstract:

Today, one of the most popular nanomaterials are thin nanofibrous layers, which are used in many fields of industry, eg electronics, optics, filtration and the textile industry. They can be produced by various methods, such as drawing, template synthesis, molecular self-assembly or phase separation method, but the most common method is electrospinning from a solution or melts. Electrospinning is gaining more and more interest due to its versatility, simplicity and economy as well as the possibility of producing fibers from various types of polymeric, ceramic and metalic materials. Nanofibrous layers produced by this method are characterized by high quality and the desired physicochemical properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 293)

Pages:

35-49

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Lewandowska, K. Kurzydłowski, Engineering and functional nanomaterials, Polish Scientific Publishers PWN, Warszawa, (2011).

Google Scholar

[2] Y. Zhang, C. T. Lim, S. Ramakrishna, Z. M. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, Journal of Materials Science: Materials in Medicine, 16 (2015) 933-946.

DOI: 10.1007/s10856-005-4428-x

Google Scholar

[3] W. Bendkowska, Techniques of nanofibers preparation Part 3b. Electrospinning from melts and inorganic compound, 62 (2008) 37-40.

Google Scholar

[4] B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage, Progress in Materials Science, 76 (2015) 319-380.

DOI: 10.1016/j.pmatsci.2015.08.002

Google Scholar

[5] N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, 28 (2010) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[6] T.J. Still, H. A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, 29 (2008) 1989-2006.

DOI: 10.1016/j.biomaterials.2008.01.011

Google Scholar

[7] T. Subbiah, G.S. Bhat, R.W. Trock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers, Journal of Applied Polymer Science, 96 (2005) 557-569.

DOI: 10.1002/app.21481

Google Scholar

[8] A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on aligned morphology, structures and tensile properties, Composites Science and Technology, 70 (2010) 703-718.

DOI: 10.1016/j.compscitech.2010.01.010

Google Scholar

[9] S. K. Tiwari, S.S. Venkatraman, Importance of viscosity paramteters in electrospinning: Of monolithic and core-shell fibers, Materials Science and Engineering, 32 (2012) 1037-1042.

DOI: 10.1016/j.msec.2012.02.019

Google Scholar

[10] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63 (2003) 2223–2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[11] Wolkensztejn F.F., Electrone theory of catalysis on semiconductors, Polish Scientific Publishers PWN, Warszawa, (1961).

Google Scholar

[12] E.K. Kusiak-Nejman, Disseration, Preparation and studies of TiO2/C photocatalysts for water and sewage treatment, West Pomeranian University of Technology in Szczecin, (2012).

Google Scholar

[13] O. Carp, C.L. Huisman, A. Reller, Photoinducted reactivity of titanium dioxide, Progress in Solid State Chemistry, 32 (2004) 33-177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[14] F. Huang, B. Motealleh, W. Zheng, M. T. Janish, C. B. Carter, C. J. Cornelius, Electrospinning amorphous SiO2-TiO2 and TiO2 nanofibers using sol-gel chemistry and its thermal conversion into anatase and rutile, Ceramics International, 44 (2018) 4577-4585.

DOI: 10.1016/j.ceramint.2017.10.134

Google Scholar

[15] M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, TiO2 nanorods grown by hydrothermal method and their photocatalytic activity for hydrogen production, Materials Letters, 237 (2019) 310-313.

DOI: 10.1016/j.matlet.2018.11.040

Google Scholar

[16] M.V. Someswararao, R.S. Dubey, P.S.V. Subbarao, Shyam Singh, Electrospinning process parameters dependent investigation of TiO2 nanofibers, Results in Physics, 11 (2018) 223-231.

DOI: 10.1016/j.rinp.2018.08.054

Google Scholar

[17] T. Tański, W. Matysiak, D. Kosmalska, A. Lubos, Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating, Bulletin of the Polish Academy of Sciences-Technical Sciences, 66 (2018) 151-156.

Google Scholar

[18] W. Matysiak, T. Tański, B. Hajduk, Manufacturing and investigation of physical properties of polyacrylonitrile nanofiber composites with SiO2, TiO2 and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology, 7 (2016) 1141-1155.

DOI: 10.3762/bjnano.7.106

Google Scholar

[19] P.V. Viet, T.H. Huy, S.J. You, L.V. Hieu, C.M., Thi, Hydrothermal synthesis, characterization, and photocatalytic activity of silicon doped TiO2 nanotubes, Superlattices and Microstructures, 123 (2018) 447-455.

DOI: 10.1016/j.spmi.2018.09.035

Google Scholar

[20] J. Zhang, X. Hou, Z. Pang, Y. Cai, H. Zhou, P. Lv, Q. Wei, Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications, Ceramics International, 43 (2017) 15911-15917.

DOI: 10.1016/j.ceramint.2017.08.166

Google Scholar

[21] M. Vahtrus, A. Šutka, S. Vlassov, A. Šutka, B. Polyakov, R. Saar, L. Dorogin, R. Lõhmus, Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques, Materials Characterization, 100 (2015) 98-10.

DOI: 10.1016/j.matchar.2014.12.019

Google Scholar

[22] G.S. Anjusree, T.G. Deepak, Shantikumar V Nair, A. Sreekumaran Nair, Facile fabrication of TiO2 nanoparticle–TiO2 nanofiber composites by co-electrospinning–electrospraying for dye-sensitized solar cells, Journal of Energy Chemistry, 24 (2015) 762-769.

DOI: 10.1016/j.jechem.2015.11.001

Google Scholar

[23] X. He, C.P. Yang, G.L. Zhang, D.W. Shi, Q.A. Huang, H.B. Xiao, Y. Liu, R. Xiong, Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment, Materials & Design, 106 (2016) 74-80.

DOI: 10.1016/j.matdes.2016.05.025

Google Scholar

[24] S. Suphankij, W. Mekprasart, W. Pecharapa, Photocatalytic of N-doped TiO2 Nanofibers Prepared by Electrospinning, Energy Procedia, 34 (2013) 751-756.

DOI: 10.1016/j.egypro.2013.06.810

Google Scholar

[25] X. P. Shen, S. K. Wu, H. Zhao, Q. Liu, Synthesis of single-crystalline Bi2O3 nanowires by atmospheric pressure chemical vapor deposition approach. Physica E: Low-dimensional Systems and Nanostructures, 39 (2017) 133-136.

DOI: 10.1016/j.physe.2007.02.001

Google Scholar

[26] X. Huang, W. Zhang, Y.Tan, J. Wu, Y. Gao, B. Tang, Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors, Ceramics International, 42 (2016) 2099-2105.

DOI: 10.1016/j.ceramint.2015.09.157

Google Scholar

[27] C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, Journal of Colloid and Interface Science, 333 (2009) 242-248.

DOI: 10.1016/j.jcis.2008.12.077

Google Scholar

[28] W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, P. Szperlich, Comparison of optical properties of PAN/TiO2, PAN/Bi2O3, and PAN/SbSI nanofibers, Optical Materials, 83 (2018) 145-151.

DOI: 10.1016/j.optmat.2018.05.055

Google Scholar

[29] P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles, Applied Surface Science, 424 (2017) 206-212.

DOI: 10.1016/j.apsusc.2017.03.232

Google Scholar

[30] C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning, Scripta Materialia, 59 (2008) 332-335.

DOI: 10.1016/j.scriptamat.2008.03.038

Google Scholar

[31] M. Jamil, M. H. Hazlan, R. M. Ramli, N. Z. N. Azman, Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 or WO3 as potential x-ray shielding material, Radiation Physics and Chemistry, 156 (2019) 272-282.

DOI: 10.1016/j.radphyschem.2018.11.018

Google Scholar

[32] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition 53(2015) 3368–86.

DOI: 10.1002/anie.201409783

Google Scholar

[33] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties s and performance relationship. Desalination 326 (2013) 77–95.

DOI: 10.1016/j.desal.2013.06.016

Google Scholar

[34] S. Agarwal, A. Greiner, J.H. Wendorff. Functional materials by electrospinning of polymers. Progress in Polymer Science 38 (2013) 963–91.

DOI: 10.1016/j.progpolymsci.2013.02.001

Google Scholar

[35] Y. Laio, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications, Progress in Polymer Science, 77 (2018) 69-94.

DOI: 10.1016/j.progpolymsci.2017.10.003

Google Scholar

[36] X. Wang, K. Zhang, Y. Yang, L. Wang, Z. Zhou, M. Zhu, B. S. Hsiao, B Chu, Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route, Journal of Membrane Science, 356 (2010) 110-116.

DOI: 10.1016/j.memsci.2010.03.039

Google Scholar

[37] K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer, 47 (2006) 2434-2441.

DOI: 10.1016/j.polymer.2006.01.042

Google Scholar

[38] A. Dastbaz, A. R. Keshtkar, Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning, Applied Surface Science, 293 (2014) 336-344.

DOI: 10.1016/j.apsusc.2013.12.164

Google Scholar

[39] C. Feng, K.C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, Journal of Membrane Science, 311 (2008) 1-6.

DOI: 10.1016/j.memsci.2007.12.026

Google Scholar

[40] J.A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T.S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – Clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation, Journal of Membrane Science, 397–398 (2012) 80-86.

DOI: 10.1016/j.memsci.2012.01.012

Google Scholar

[41] A. Almasian, G.C. Fard, M.P. Gashti, M. Mirjalili, Z.M. Shourijeh, Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes, Desalination and. Water Treatment, 57 (2016) 10333–10348.

DOI: 10.1080/19443994.2015.1041161

Google Scholar

[42] Q. Wang, Y. Du, Q. Feng, F. Huang, K. Lu, J. Liu, Q. Wei, Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. Journal of Applied Polymer Science,128 (2013) 1152–1157.

DOI: 10.1002/app.38273

Google Scholar

[43] W. Matysiak, T. Tański, W. Smok, Electrospinning of PAN and PAN-GO nanofibers, Journal of Achievements in Materials and Manufacturing Engineering, 98 (2018) 18-26.

DOI: 10.5604/01.3001.0012.9653

Google Scholar

[44] A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, M. Aliabadi, Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions, Journal of the Taiwan Institute of Chemical Engineers, 58 (2016) 333-343.

DOI: 10.1016/j.jtice.2015.06.003

Google Scholar

[45] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, 35 (1995) 151-160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[46] R. Vasita, D.S. Katti, Nanofibers and their applications in tissue engineering, International Journal of Nanomedicine, 1 (2006) 15-30.

Google Scholar

[47] H.J. Jin, S. V. Fridrikh, G. C. Rutledge, D. L. Kaplan, Electrospinning Bombyx mori Silk with Poly(ethylene oxide), Biomacromolecules, 6 (2002), 1233-1239.

DOI: 10.1021/bm025581u

Google Scholar

[48] G. Toskas, C. Cherif, R.D. Hund, E. Laourine, B. Mahltig, A. Fahmi, C. Heinemann, T. Hanke, Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration, Carbohydrate Polymers, 94 (2013) 713-722.

DOI: 10.1016/j.carbpol.2013.01.068

Google Scholar

[49] V. S. Waghmare, P. R. Wadke, S. Dyawanapelly, A. Deshpande, R. Jain, P. Dandekar, Starch based nanofibrous scaffolds for wound healing applications, Bioactive Materials, 3 (2018) 255-266.

DOI: 10.1016/j.bioactmat.2017.11.006

Google Scholar

[50] J.A. Wahab, H. Ogasawara, I.S. Kim, Q.Q. Ni, Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications, Materials Letters, 2019 In Press.

DOI: 10.1016/j.matlet.2019.01.084

Google Scholar

[51] Subramanian Sundarrajan, Arunachalam Venkatesan, Satya R. Agarwal, Nabeela Nasreen Shaik Anwar Ahamed, Seeram Ramakrishna, Fabrication of NiO/zirconium oxide nanofibers by electrospinning, Materials Science and Engineering: C, 45 (2014) 369-373.

DOI: 10.1016/j.msec.2014.09.029

Google Scholar

[52] D. B. Ratner, A.S. Hoffman, F.J. Schoen, Biomaterial science: an introduction to materials in medicine, Elsevier Academic Press, San Diego, (2004).

Google Scholar

[53] C. Tu, Q. Cal, J. Yang, Y. Wan, J. Bei, S. Wang, The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid-liquid phase separation, Polymers for Advanced Technologies, 14 (2003) 235-238.

DOI: 10.1002/pat.370

Google Scholar

[54] W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering, Journal of Biomedical Materials Research, 60 (2002) 612-621.

DOI: 10.1002/jbm.10167

Google Scholar

[55] Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna, Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Engineering, 11 (2015) 101-109.

DOI: 10.1089/ten.2005.11.101

Google Scholar

[56] A. Atala, R.P. Lanza, Methods of tissue engineering, Academic Press, San Diego, (2002).

Google Scholar

[57] F. Yang, C.Y. Xu, M. Kotaki, S. Wang, S. Ramakrishna, Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold, Journal of Biomaterials Science. Polymer Edition, 15 (2004) 1483-1497.

DOI: 10.1163/1568562042459733

Google Scholar

[58] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, 26 (2005) 2603-2610.

DOI: 10.1016/j.biomaterials.2004.06.051

Google Scholar

[59] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules, 3 (2002) 232-238.

DOI: 10.1021/bm015533u

Google Scholar

[60] B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Electrospinning of silk fibroin and its effect on the adhesion and spreading of normal human keratinocytes and fibroblast in vitro, Biomaterials, 25 (2004) 1289-1297.

DOI: 10.1016/j.biomaterials.2003.08.045

Google Scholar

[61] M.S. Khil, D.I. Cha, H.Y. Kim, I.S. Kim, N. Bhattari, Electrospun nanofibrous polyurethane membrane as wound dressing, Journal of Biomedical Materials Research. Part B. Applied Biomaterials, 67 (2003) 675-679.

DOI: 10.1002/jbm.b.10058

Google Scholar

[62] G. Chen, J. Guo, J. Nie, G. Ma, Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning, Polymer, 83 (2016) 12-19.

DOI: 10.1016/j.polymer.2015.12.002

Google Scholar