[1]
H. Hoppe, N.S. Sariciftci. Organic solar cells: An overview, Jo. Mat. Research., 19/ 7 (2004) 1924-1945.
Google Scholar
[2]
M. Lipiński, R. Mroczyński. Optimisation of multilayers antireflection coating for solar cells, Arch. Met. Mat., 53/1 (2008) 189-192.
Google Scholar
[3]
C.J. Brabec, N.S. Sariciftci, J.C. Hummelen Plastic Solar Cells, Adv. Func. Mat., 11/ 1 (2001) 15-26.
Google Scholar
[4]
A.J, Mozer, N.S. Sariciftci, Conjugated polymer photovoltaic devices and materials, Comptes Rendus Chimie, (5-6) (2006) 568-577.
DOI: 10.1016/j.crci.2005.03.033
Google Scholar
[5]
G. Adam, Pivrikas A., Ramil A.M., Tadesse S., Yohannes T., Sariciftci N.S., Egbe D.A.M. 2011. Mobility and performance studies on polymer blend effects of side chains volume fraction, Jo. Mat. Chem., 21/ 8 (2011) 2594-2600.
DOI: 10.1039/c0jm02668a
Google Scholar
[6]
B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, Parisi Organic p-i-n solar cells, App. Phys. A, 79/ 1 (2004) 1-14.
DOI: 10.1007/s00339-003-2494-9
Google Scholar
[7]
K. Mazzio, Ch. Luscombe, The future of organic photovoltaics. Chem. Soc. Rev., 44/ 1 (2015) 78-90.
DOI: 10.1039/c4cs00227j
Google Scholar
[8]
J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, D.-Y. Kim, Three‐Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells, Adv. Fun. Mat., 19/ 15 (2009) 2398-2406.
DOI: 10.1002/adfm.200900183
Google Scholar
[9]
C. Winder, To increase the photon harvesting in the photoactive layer of bulk heterojunction organic solar cells, Dissertation, JK University Linz, (2004).
Google Scholar
[10]
A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa, U. Asawapirom, Influence of crystallizable solvent on the morphology and . performance of P3HT PCBM bulk heterojunction solar cells, Mat. Sol. Cell., 94/3 (2010) 531-536.
DOI: 10.1016/j.solmat.2009.11.018
Google Scholar
[11]
B. Ray, M.A. Alam, Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering, Sol. Ene. Mat. Sol. Cells, 99 (2012) 204–212.
DOI: 10.1016/j.solmat.2011.11.042
Google Scholar
[12]
J. Kim, K. Kim, S.H. Ko, W. Kim, Optimum design of ordered bulk heterojunction organic photovoltaics, Sol. Ene. Mat. Sol. Cells, 95/ 11(2011) 3021-3024.
DOI: 10.1016/j.solmat.2011.06.024
Google Scholar
[13]
Y. Zhu, X. Xu, L. Zhang, J. Chen, Y. Cao, High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO, Sol. Ene. Mat. Sol. Cells, 97/ 1 (2012) 83-88.
DOI: 10.1016/j.solmat.2011.09.030
Google Scholar
[14]
Y. Ja. Chang, J.-L. Hsu, Y.-H. Li, S. Biring, T.-H. Yeh, J.-Y. Guo., S.-W. Liu. Carbazole-based small molecules for vacuum-deposited organic photovoltaic devices with open-circuit voltage exceeding 1 V, Org. Electronics, 47 (2017) 162-173.
DOI: 10.1016/j.orgel.2017.05.007
Google Scholar
[15]
S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y-H. Liu, K.T. Wong, A donor–acceptor–acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%, Chem. Comm., 48 (2012) 1857-1859.
DOI: 10.1039/c2cc16390j
Google Scholar
[16]
Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.H. Liu, K.-T. Wong, J. Wen, D.J. Miller, S.B. Darling, Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization, Jou. Am. Chem. Soc., 134/33 (2012)13616-13623.
DOI: 10.1021/ja301872s
Google Scholar
[17]
Y. Zou, J. Holst, Y. Zhang, R.J. Holmes, 7.9% efficient vapor-deposited organic photovoltaic cells based on a simple bulk heterojunction, Jou. Mat. Chem. A, 2/3 (2014) 12397-12402.
DOI: 10.1039/c4ta02137a
Google Scholar
[18]
K.L. Mutolo, E.I. Mayo, B.P. Rand, S.R. Forrest, M.E. Thompson, Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells, Jou. Am. Chem. Soc.,. 128/ 25 (2006) 8108-8109.
DOI: 10.1021/ja061655o
Google Scholar
[19]
X. Tong, B.E. Lassiter, S.R. Forrest, Inverted organic photovoltaic cells with high open-circuit voltage, Org. Electr., 11/ 4 (2010) 705-709.
DOI: 10.1016/j.orgel.2009.12.024
Google Scholar
[20]
P. Sullivan, A. Duraud, I. Hancox, N. Beaumont, G. Mirri, J.H.R. Tucker, R.A. Hatton, M. Shipman, T.S. Jones, Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaic, Adv. Ener. Mate., 1/3 (2012) 352-355.
DOI: 10.1002/aenm.201100036
Google Scholar
[21]
C.-F. Lin, S.-W. Liu, C.-C. Lee, J.-C.Hunag, W.-C. Su, T.-L. Chiu, C.-T. Chen, J.-J.-H. Lee, Open-circuit voltage and efficiency improvement of subphthalocyanine-based organic photovoltaic device through deposition rate control, Sol. Ene. Mat. Sol. Cells, 103 (2012) 69-75.
DOI: 10.1016/j.solmat.2012.04.005
Google Scholar
[22]
K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bauerle, Efficient Vacuum‐Deposited Organic Solar Cells Based on a New Low‐Bandgap Oligothiophene and Fullerene C60, Adv. Mat., 18 (2006) 2872-2875.
DOI: 10.1002/adma.200600658
Google Scholar
[23]
S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes, Chem. Comm., 47 (2011) 1982-1984.
DOI: 10.1039/c0cc04541a
Google Scholar
[24]
R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehike, C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bauerle, Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells, Adv. Func. Mat., 21/ 5 (2011) 897-910.
DOI: 10.1002/adfm.201001639
Google Scholar
[25]
S. Wang, E.I. Mayo, M.D. Perez, L. Griffe, G. Wei, P.I. Djurovich, S.R. Forrest, M.E. Thompson, High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor, App. Phys. Lett., 94 (2009) 233304.
DOI: 10.1063/1.3152011
Google Scholar
[26]
X. Xiao, G. Wei, S. Wang, J.D. Zimmerman, C.K. Renshaw, M.E. Thompson, S.R. Forrest, Small‐Molecule Photovoltaics Based on Functionalized Squaraine Donor Blends, Adv. Mat., 24/ 15 (2012) 1956-1960.
DOI: 10.1002/adma.201104261
Google Scholar
[27]
G. Chen, H. Sasabe, Z. Wang, X.-F. Wang, Z. Hong, Y. Yang, J. Kido, Co‐Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency, Adv. Mat., 24/15 (2012) 2786-2773.
DOI: 10.1002/adma.201200234
Google Scholar
[28]
J. Grolleau, F. Gohier, M. Allain, S. Legoupy, C. Cabanetos, P. Frere, Rapid and green synthesis of complementary DA small molecules for organic photovoltaics, Org. Electr., 42 (2017)322-328.
DOI: 10.1016/j.orgel.2016.12.046
Google Scholar
[29]
K.Y. Chiu, T.T. Ha Tran, Ch.-G. Wu, Sh.-H. Chang, T.F. Yangue, Y.O.Su, Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics, Jou. Electr. Chem., (2017) 118-124.
DOI: 10.1016/j.jelechem.2017.01.053
Google Scholar
[30]
P. Jarka, T. Tański, W. Matysiak, Ł. Krzeminski, B. Hajduk, M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles, App. Sur. Sc.. 424 (2017) 206-212.
DOI: 10.1016/j.apsusc.2017.03.232
Google Scholar
[31]
T. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, K. Gołombek, Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods, App. Sur. Sc., 424/2 (2017) 184-189.
DOI: 10.1016/j.apsusc.2017.02.258
Google Scholar
[32]
S. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaic, Nature Mat., 4/2 (2005) 138–142.
DOI: 10.1038/nmat1299
Google Scholar