Study of Photovoltaic Devices with Hybrid Active Layer

Article Preview

Abstract:

The aim of this work is to present the influences of composition of the material and manufacturing technology conditions of the organic photovoltaics devices (OPv) with the organic and hybrid bulk heterojunction on the active layers properties and cells performance. The layers were produced by using small molecular compounds: the metal-phthalocyanine (MePc) and perylene derivatives (PTCDA) and the titanium dioxide (TiO2) nanoparticles. Two kinds of metal phthalocyanines (NiPc, TiOPc) were used as donor material and pperylenetetracarboxylic dianhydride (PTCDA) as an acceptor. The used manufacturing technique allowed to employ thin layers of materials in a fast deposition process. Bulk heterojunction was created by simultaneously applying the MePc:PTCDA materials during the evaporation of the components mixture.The research was based on the estimate of composition of bulk heterojunction, the examination of the surface morphology of the used layers and optical properties studies of the heterojunction and its implementation to photovoltaic architecture. The produced photovoltaic cells parameters were determined on the basis of current - voltage characteristics.The researches of structure of obtained layers were conducted by using scanning electron microscope (SEM) and transmission electron microscopy (TEM). The quantitative determination of surface topography by determining RMS and Ra coefficients were performed by atomic force microscopy (AFM). In order to determine the optical properties of the films the UV-Visible spectroscope have been utilized. Current - voltage characteristics were employed to determine the basic photovoltaic parameters using a dedicated device.The paper describes the influence of the individual components sharing the bulk heterojunction on its structure, optical properties and morphology of surface. In addition it allows for linking active layers properties with the parameters of the photovoltaic cells. The obtained results suggest the possibility of developing the utilized materials and technology in the further works on photovoltaic structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 293)

Pages:

51-64

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hoppe, N.S. Sariciftci. Organic solar cells: An overview, Jo. Mat. Research., 19/ 7 (2004) 1924-1945.

Google Scholar

[2] M. Lipiński, R. Mroczyński. Optimisation of multilayers antireflection coating for solar cells, Arch. Met. Mat., 53/1 (2008) 189-192.

Google Scholar

[3] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen Plastic Solar Cells, Adv. Func. Mat., 11/ 1 (2001) 15-26.

Google Scholar

[4] A.J, Mozer, N.S. Sariciftci, Conjugated polymer photovoltaic devices and materials, Comptes Rendus Chimie, (5-6) (2006) 568-577.

DOI: 10.1016/j.crci.2005.03.033

Google Scholar

[5] G. Adam, Pivrikas A., Ramil A.M., Tadesse S., Yohannes T., Sariciftci N.S., Egbe D.A.M. 2011. Mobility and performance studies on polymer blend effects of side chains volume fraction, Jo. Mat. Chem., 21/ 8 (2011) 2594-2600.

DOI: 10.1039/c0jm02668a

Google Scholar

[6] B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, Parisi Organic p-i-n solar cells, App. Phys. A, 79/ 1 (2004) 1-14.

DOI: 10.1007/s00339-003-2494-9

Google Scholar

[7] K. Mazzio, Ch. Luscombe, The future of organic photovoltaics. Chem. Soc. Rev., 44/ 1 (2015) 78-90.

DOI: 10.1039/c4cs00227j

Google Scholar

[8] J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, D.-Y. Kim, Three‐Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells, Adv. Fun. Mat., 19/ 15 (2009) 2398-2406.

DOI: 10.1002/adfm.200900183

Google Scholar

[9] C. Winder, To increase the photon harvesting in the photoactive layer of bulk heterojunction organic solar cells, Dissertation, JK University Linz, (2004).

Google Scholar

[10] A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa, U. Asawapirom, Influence of crystallizable solvent on the morphology and . performance of P3HT PCBM bulk heterojunction solar cells, Mat. Sol. Cell., 94/3 (2010) 531-536.

DOI: 10.1016/j.solmat.2009.11.018

Google Scholar

[11] B. Ray, M.A. Alam, Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering, Sol. Ene. Mat. Sol. Cells, 99 (2012) 204–212.

DOI: 10.1016/j.solmat.2011.11.042

Google Scholar

[12] J. Kim, K. Kim, S.H. Ko, W. Kim, Optimum design of ordered bulk heterojunction organic photovoltaics, Sol. Ene. Mat. Sol. Cells, 95/ 11(2011) 3021-3024.

DOI: 10.1016/j.solmat.2011.06.024

Google Scholar

[13] Y. Zhu, X. Xu, L. Zhang, J. Chen, Y. Cao, High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO, Sol. Ene. Mat. Sol. Cells, 97/ 1 (2012) 83-88.

DOI: 10.1016/j.solmat.2011.09.030

Google Scholar

[14] Y. Ja. Chang, J.-L. Hsu, Y.-H. Li, S. Biring, T.-H. Yeh, J.-Y. Guo., S.-W. Liu. Carbazole-based small molecules for vacuum-deposited organic photovoltaic devices with open-circuit voltage exceeding 1 V, Org. Electronics, 47 (2017) 162-173.

DOI: 10.1016/j.orgel.2017.05.007

Google Scholar

[15] S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y-H. Liu, K.T. Wong, A donor–acceptor–acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%, Chem. Comm., 48 (2012) 1857-1859.

DOI: 10.1039/c2cc16390j

Google Scholar

[16] Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.H. Liu, K.-T. Wong, J. Wen, D.J. Miller, S.B. Darling, Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization, Jou. Am. Chem. Soc., 134/33 (2012)13616-13623.

DOI: 10.1021/ja301872s

Google Scholar

[17] Y. Zou, J. Holst, Y. Zhang, R.J. Holmes, 7.9% efficient vapor-deposited organic photovoltaic cells based on a simple bulk heterojunction, Jou. Mat. Chem. A, 2/3 (2014) 12397-12402.

DOI: 10.1039/c4ta02137a

Google Scholar

[18] K.L. Mutolo, E.I. Mayo, B.P. Rand, S.R. Forrest, M.E. Thompson, Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells, Jou. Am. Chem. Soc.,. 128/ 25 (2006) 8108-8109.

DOI: 10.1021/ja061655o

Google Scholar

[19] X. Tong, B.E. Lassiter, S.R. Forrest, Inverted organic photovoltaic cells with high open-circuit voltage, Org. Electr., 11/ 4 (2010) 705-709.

DOI: 10.1016/j.orgel.2009.12.024

Google Scholar

[20] P. Sullivan, A. Duraud, I. Hancox, N. Beaumont, G. Mirri, J.H.R. Tucker, R.A. Hatton, M. Shipman, T.S. Jones, Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaic, Adv. Ener. Mate., 1/3 (2012) 352-355.

DOI: 10.1002/aenm.201100036

Google Scholar

[21] C.-F. Lin, S.-W. Liu, C.-C. Lee, J.-C.Hunag, W.-C. Su, T.-L. Chiu, C.-T. Chen, J.-J.-H. Lee, Open-circuit voltage and efficiency improvement of subphthalocyanine-based organic photovoltaic device through deposition rate control, Sol. Ene. Mat. Sol. Cells, 103 (2012) 69-75.

DOI: 10.1016/j.solmat.2012.04.005

Google Scholar

[22] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bauerle, Efficient Vacuum‐Deposited Organic Solar Cells Based on a New Low‐Bandgap Oligothiophene and Fullerene C60, Adv. Mat., 18 (2006) 2872-2875.

DOI: 10.1002/adma.200600658

Google Scholar

[23] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes, Chem. Comm., 47 (2011) 1982-1984.

DOI: 10.1039/c0cc04541a

Google Scholar

[24] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehike, C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bauerle, Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells, Adv. Func. Mat., 21/ 5 (2011) 897-910.

DOI: 10.1002/adfm.201001639

Google Scholar

[25] S. Wang, E.I. Mayo, M.D. Perez, L. Griffe, G. Wei, P.I. Djurovich, S.R. Forrest, M.E. Thompson, High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor, App. Phys. Lett., 94 (2009) 233304.

DOI: 10.1063/1.3152011

Google Scholar

[26] X. Xiao, G. Wei, S. Wang, J.D. Zimmerman, C.K. Renshaw, M.E. Thompson, S.R. Forrest, Small‐Molecule Photovoltaics Based on Functionalized Squaraine Donor Blends, Adv. Mat., 24/ 15 (2012) 1956-1960.

DOI: 10.1002/adma.201104261

Google Scholar

[27] G. Chen, H. Sasabe, Z. Wang, X.-F. Wang, Z. Hong, Y. Yang, J. Kido, Co‐Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency, Adv. Mat., 24/15 (2012) 2786-2773.

DOI: 10.1002/adma.201200234

Google Scholar

[28] J. Grolleau, F. Gohier, M. Allain, S. Legoupy, C. Cabanetos, P. Frere, Rapid and green synthesis of complementary DA small molecules for organic photovoltaics, Org. Electr., 42 (2017)322-328.

DOI: 10.1016/j.orgel.2016.12.046

Google Scholar

[29] K.Y. Chiu, T.T. Ha Tran, Ch.-G. Wu, Sh.-H. Chang, T.F. Yangue, Y.O.Su, Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics, Jou. Electr. Chem., (2017) 118-124.

DOI: 10.1016/j.jelechem.2017.01.053

Google Scholar

[30] P. Jarka, T. Tański, W. Matysiak, Ł. Krzeminski, B. Hajduk, M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles, App. Sur. Sc.. 424 (2017) 206-212.

DOI: 10.1016/j.apsusc.2017.03.232

Google Scholar

[31] T. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, K. Gołombek, Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods, App. Sur. Sc., 424/2 (2017) 184-189.

DOI: 10.1016/j.apsusc.2017.02.258

Google Scholar

[32] S. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaic, Nature Mat., 4/2 (2005) 138–142.

DOI: 10.1038/nmat1299

Google Scholar