Solid State Phenomena
Vol. 306
Vol. 306
Solid State Phenomena
Vol. 305
Vol. 305
Solid State Phenomena
Vol. 304
Vol. 304
Solid State Phenomena
Vol. 303
Vol. 303
Solid State Phenomena
Vol. 302
Vol. 302
Solid State Phenomena
Vol. 301
Vol. 301
Solid State Phenomena
Vol. 300
Vol. 300
Solid State Phenomena
Vol. 299
Vol. 299
Solid State Phenomena
Vol. 298
Vol. 298
Solid State Phenomena
Vol. 297
Vol. 297
Solid State Phenomena
Vol. 296
Vol. 296
Solid State Phenomena
Vol. 295
Vol. 295
Solid State Phenomena
Vol. 294
Vol. 294
Solid State Phenomena Vol. 300
Paper Title Page
Abstract: This chapter introduces stainless steels and their classification for the high temperature applications. The enabling theories for the high temperature corrosion i.e. thermodynamics and kinetics are further addressed. The basic concept of thermodynamics is given and the stability of the formation of thermal oxide on stainless steel is exemplified. Types of defect in the oxide and Fick’s first law for the diffusion of defect though the oxide are introduced. Oxidation kinetics is explained with the emphasis on the derivation of the parabolic rate law.
1
Abstract: The mechanical behaviour and adhesion properties of thermal oxide scales are key issues for steel processing and long-term durability. This chapter aims at taking up the various aspects to be considered for such studies. The first part is devoted to a description of the origin of stress and stress quantification. Then, description of mechanical failure and damaging patterns of thermal oxide scales will be given. Finally, definitions of adhesion energy as well as quantitative methods to measure adhesion energy will be proposed. An appendix describing the hypotheses and the constitutive equations for plane stress analysis, which suits to oxide scales, is also given The purpose is enriched by references in particular to Alain Galerie’s co-workers’ publications.
25
Abstract: This chapter aims at reviewing the characterisation techniques that are commonly used for high temperature oxidation study, especially on stainless steels. In addition, the experimental studies about the high temperature oxidation i.e. thermogravimetric method and chromium volatilisation measurement are explained. The various kinds of characterisation techniques for physico-chemical and electronic properties of thermal oxide scales are reviewed, starting from optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), focused ion beam coupled with scanning electron microscope (FIB/SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), and photoelectrochemical characterisation (PEC). The review focuses on the basic concepts and shows how the characterising tools can be applied to thermal oxide characterisation.
47
Abstract: This chapter is dedicated to the description of high temperature oxidation of both chromia and alumina forming alloys. The defect structures of iron and chromium are firstly reviewed. The effects of elements on stainless steel oxidation behaviour are further addressed. For the chromia-forming stainless steel, the oxidation rate is reduced with the increased silicon content but not in a monotonic manner. Titanium and niobium can reduce breakaway oxidation of Fe–18Cr–10Ni austenitic stainless steel. Titanium can enhance the adhesion of scale to the Fe–18Cr by mechanical keying effect of TiO2 formed at the steel/scale interface. For the alumina-forming stainless steel, the formation of alumina and its transformation during oxidation are reviewed. Chromium can be added to reduce the critical aluminium content in the steels in order to form alumina at high temperatures. The addition of reactive elements with appropriate level can improve scale adhesion and reduce the steel oxidation rate. Refractory element like molybdenum can increase strength of material but also accelerate the oxidation rate of the steels containing reactive elements. The development of new alumina-forming austenitic alloy grades is finally described.
81
Abstract: This chapter primarily reviews the nature of water vapour when it presents in bulk gas. The change in a ratio between water vapour and corresponding dissociated hydrogen, which determine the thermodynamic stability of the oxide formation, is analysed when the oxidation kinetics are linear and parabolic. When water vapour reaches the solid/gas interface, chromium species volatilisation and oxidation controlled by surface reaction can occur. The adsorbed water vapour can be further incorporated into the oxide possibly in the form of hydrogen defects. The role of these defects on altering the defect structure of the oxide is discussed. Finally, characteristics of the oxide scale on stainless steels formed in the atmosphere containing water vapour are reviewed.
107
Abstract: The chapter introduces components and working principle of solid oxide fuel cells (SOFCs). It is followed by the explanation on the choices of materials focussing on ferritic stainless steels. The review is further made on the required properties of these steels, i.e. low oxidation rate, low chromium species volatilisation rate, high electrical conductivity and good scale adhesion. For the oxidation aspect, the behaviour of stainless steel interconnect in cathode, anode (hydrogen and biogas), and dual atmospheres are described. Surface modification by pre-oxidation and coatings to improve the oxide electrical conductivity and to reduce chromium species volatilisation is finally reviewed.
135
Showing 1 to 7 of 7 Paper Titles