CHAPTER 3 Characterisation of Thermal Oxide Scales on Stainless Steels

Article Preview

Abstract:

This chapter aims at reviewing the characterisation techniques that are commonly used for high temperature oxidation study, especially on stainless steels. In addition, the experimental studies about the high temperature oxidation i.e. thermogravimetric method and chromium volatilisation measurement are explained. The various kinds of characterisation techniques for physico-chemical and electronic properties of thermal oxide scales are reviewed, starting from optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), focused ion beam coupled with scanning electron microscope (FIB/SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), and photoelectrochemical characterisation (PEC). The review focuses on the basic concepts and shows how the characterising tools can be applied to thermal oxide characterisation.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S.R. Soria, A. Tolley, A. Yawny, A study of debris and wear damage resulting from fretting of Incoloy 800 steam generator tubes against AISI type 304 stainless steel, Wear 368–369 (2016) 219–229.

DOI: 10.1016/j.wear.2016.09.022

Google Scholar

[2] H.M. Tawancy, Failure of a furnace outlet pipe in a benzene plant by internal oxidation due to improper welding practice, Eng. Fail. Anal. 16 (2009) 2179–2185.

DOI: 10.1016/j.engfailanal.2009.02.010

Google Scholar

[3] K.I. Choudhry, D.A. Guzonas, D.T. Kallikragas, I.M. Svishchev, On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water, Corros. Sci. 111 (2016) 574–582.

DOI: 10.1016/j.corsci.2016.05.042

Google Scholar

[4] R.L. Higginson, G. Green, Whisker growth morphology of high temperature oxides grown on 304 stainless steel, Corros. Sci. 53 (2011) 1690–1693.

DOI: 10.1016/j.corsci.2011.01.026

Google Scholar

[5] M. Nezakat, H. Akhiani, S. Penttilä, M. Sabet, J. Szpunar, Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water, Corros. Sci. 94 (2015) 197–206.

DOI: 10.1016/j.corsci.2015.02.008

Google Scholar

[6] J. Issartel, S. Martoia, F. Charlot, V. Parry, G. Parry, R. Estevez, Y. Wouters, High temperature behavior of the metal/oxide interface of ferritic stainless steels, Corros. Sci. 59 (2012) 148–156.

DOI: 10.1016/j.corsci.2012.02.025

Google Scholar

[7] P. Alnegren, M. Sattari, J. Froitzheim, J.-E. Svensson, Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures, Corros. Sci. 110 (2016) 200–212.

DOI: 10.1016/j.corsci.2016.04.030

Google Scholar

[8] S. Chandra-ambhorn, P. Saranyachot, Effect of the H2 content in shielding gas on the microstructure and oxidation resistance of Fe–15.7 wt.% Cr–8.5 wt.% Mn steel GTA welds, J. Mater. Process. Technol. 268 (2019) 18–24.

DOI: 10.1016/j.jmatprotec.2019.01.004

Google Scholar

[9] K.I. Choudhry, S. Mahboubi, G.A. Botton, J.R. Kish, I.M. Svishchev, Corrosion of engineering materials in a supercritical water cooled reactor: characterization of oxide scales on alloy 800H and stainless steel 316, Corros. Sci. 100 (2015) 222–230.

DOI: 10.1016/j.corsci.2015.07.035

Google Scholar

[10] A. Mortezaie, M. Shamanian, An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel, Int. J. Press. Vessels Pip. 116 (2014) 37–46.

DOI: 10.1016/j.ijpvp.2014.01.002

Google Scholar

[11] M. Fulger, M. Mihalache, D. Ohai, S. Fulger, S.C. Valeca, Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment, J. Nucl. Mater. 415 (2011) 147–157.

DOI: 10.1016/j.jnucmat.2011.05.007

Google Scholar

[12] L. Tan, M. Anderson, D. Taylor, T.R. Allen, Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide, Corros. Sci. 53 (2011) 3273–3280.

DOI: 10.1016/j.corsci.2011.06.002

Google Scholar

[13] G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, T.R. Allen, Corrosion of austenitic alloys in high temperature supercritical carbon dioxide, Corros. Sci. 60 (2012) 246–255.

DOI: 10.1016/j.corsci.2012.03.029

Google Scholar

[14] J. Yuan, W. Wang, H. Zhang, L. Zhu, S. Zhu, F. Wang, Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam, Corros. Sci. 109 (2016) 36–42.

DOI: 10.1016/j.corsci.2016.03.021

Google Scholar

[15] P. Xu, L.Y. Zhao, K. Sridharan, T.R. Allen, Oxidation behavior of grain boundary engineered alloy 690 in supercritical water environment, J. Nucl. Mater. 422 (2012) 143–151.

DOI: 10.1016/j.jnucmat.2011.12.022

Google Scholar

[16] T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, A. Kimura, The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys, Corros. Sci. 76 (2013) 310–316.

DOI: 10.1016/j.corsci.2013.07.004

Google Scholar

[17] A. Srisrual, J.-P. Petit, Y. Wouters, A. Galerie, The effect of water vapor on thermal oxide grown on Inconel 690, Appl. Mech. Mater. 670–671 (2014) 74–81.

DOI: 10.4028/www.scientific.net/amm.670-671.74

Google Scholar

[18] A. Srisrual, K. Pitaksakorn, P. Promdirek, Oxidation behaviour of Incoloy 800HT in pure oxygen, Mater. Today Proc. 5 (2018) 9238–9243.

DOI: 10.1016/j.matpr.2017.10.095

Google Scholar

[19] A. Srisrual, K. Pitaksakorn, P. Promdirek, Influence of water vapor on oxide scale morphology of Incoloy800HT at 850ºC, Appl. Mech. Mater. 875 (2018) 36–40.

DOI: 10.4028/www.scientific.net/amm.875.36

Google Scholar

[20] A. Galerie, J.-P. Petit, Y. Wouters, J. Mougin, A. Srisrual, P.Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Mater. Sci. Forum 696 (2011) 200–205.

DOI: 10.4028/www.scientific.net/msf.696.200

Google Scholar

[21] S. Zhang, Y. Tan, K. Liang, Photoelectrochemical study on semiconductor properties of oxide films on alloy 600 in high temperature water with ZnO addition, J. Nucl. Mater. 434 (2013) 43–48.

DOI: 10.1016/j.jnucmat.2012.11.024

Google Scholar

[22] S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe–15.7 wt.% Cr–8.5 wt.% Mn in oxygen without and with water vapour at 700 ºC, Corros. Sci. 148 (2019) 39–47.

DOI: 10.1016/j.corsci.2018.11.023

Google Scholar

[23] S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corros. Sci. 148 (2019) 355–365.

DOI: 10.1016/j.corsci.2018.12.030

Google Scholar

[24] S. Chandra-ambhorn, T. Phadungwong, K. Sirivedin, Effects of carbon and coiling temperature on the adhesion of thermal oxide scales to hot-rolled carbon steels, Corros. Sci. 115 (2017) 30–40.

DOI: 10.1016/j.corsci.2016.11.014

Google Scholar

[25] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of process parameters on mechanical adhesion of thermal oxide scales on hot-rolled low carbon steel, Oxid. Met. 80 (2013) 61–72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[26] K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res. Int., Spl. Issue (2012) 991–994.

Google Scholar

[27] T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res. Int., Spl. Issue (2012) 987–990.

DOI: 10.1108/acmm-07-2018-1974

Google Scholar

[28] W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corros. Sci. 106 (2016) 172–178.

DOI: 10.1016/j.corsci.2016.02.002

Google Scholar

[29] V. Parry, W. Wongpromrat, L. Latu-Romain, C. Pascal, W. Chandra-ambhorn, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Morpho-chemical investigations and thermodynamic study of Nb-rich passive nodules grown on AISI 441 oxidized in wet atmosphere, Corros. Sci. 141 (2018) 255–263.

DOI: 10.1016/j.corsci.2018.06.036

Google Scholar

[30] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High Temp. 32 (2015) 22–27.

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[31] W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporisation from AISI 441 stainless steel oxidised in humidified oxygen, Oxid. Met. 79 (2013) 529–540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar

[32] O. Kubaschewski, E.LL. Evans, Metallurgical Thermochemistry, third ed. (reprinted), Pergamon, Great Britain, (1965).

Google Scholar

[33] I. Barin, Thermochemical Data of Pure Substances, VCH, Germany, (1989).

Google Scholar

[34] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0.23 and 1.03 wt.% Si in Ar-20% H2O at 900 ºC, Corros. Sci. 87 (2014) 101–110.

DOI: 10.1016/j.corsci.2014.06.018

Google Scholar

[35] N.K. Othman, N. Othman, J. Zhang, D.J. Young, Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres, Corros. Sci. 51 (2009) 3039–3049.

DOI: 10.1016/j.corsci.2009.08.032

Google Scholar

[36] A. Srisrual, Unpublished research.

Google Scholar

[37] P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach, Trans Tech Publications, Switzerland, (2008).

Google Scholar

[38] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, third ed., Prentice Hall, USA, (2001).

Google Scholar

[39] H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, H. Yoshida, Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique, J. Power Sources, 195 (2010) 955–961.

DOI: 10.1016/j.jpowsour.2009.09.005

Google Scholar

[40] W. Wongpromrat, Étude de la sublimation du chrome lors de l'oxydation haute température de l'alliage AISI 441 et recherche de solutions de protection, PhD Thesis, Université Grenoble Alpes, France, and King Mongkut's Institute of Technology Ladkrabang, Thailand, (2015).

Google Scholar

[41] S. Zhang, L. Li, A. Kumar, Materials Characterization Techniques, CPC Press, USA, (2009).

Google Scholar

[42] R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, fourth ed., Cengage Learning, USA, (2009).

Google Scholar

[43] W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering, fourth ed., John Wiley & Sons, USA, (2012).

Google Scholar

[44] A. Srisrual, S. Coindeau, A. Galerie, J.-P. Petit, Y. Wouters, Identification by photoelectrochemistry of oxide phases grown during the initial stages of thermal oxidation of AISI 441 ferritic stainless steel in air or in water vapour, Corros. Sci. 51 (2009) 562–568.

DOI: 10.1016/j.corsci.2008.12.002

Google Scholar

[45] J.E. Pemberton, A.L. Guy, Raman spectroscopy, in: ASM Handbook Committee (Ed.), ASM Handbook Vol. 10, ninth ed., ASM International, USA, 1986, p.126–138.

Google Scholar

[46] A. Srisrual, J.-P. Petit, Y. Wouters, C. Pascal, A. Galerie, Photoelectrochemical investigations on individual ferritic and austenitic grains of a duplex stainless steel oxidized in water vapour, Mater. High Temp. 28 (2011) 349–354.

DOI: 10.3184/096034011x13190163136192

Google Scholar

[47] A. Srisrual, Photoelectrochemical characterization of thermal oxide developed on metal and model alloys, PhD Thesis, University of Grenoble, France, (2013).

Google Scholar

[48] J.B. Lumsden, X-ray photoelectron spectroscopy, in: ASM Handbook Committee (Ed.), ASM Handbook Vol. 10, ninth ed., ASM International, USA, 1986, p.568–580.

Google Scholar

[49] A. Srisrual, J.-P. Petit, Y. Wouters, A. Galerie, Multiscale photoelectrochemical studies on oxidized duplex stainless steels, Oxid. Met. 79 (2013) 337–347.

DOI: 10.1007/s11085-013-9357-3

Google Scholar

[50] F. Di Quarto, C. Sunseri, S. Piazza, and M.C. Romano, Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements. Its importance for a quantitative use of photocurrent spectroscopy in corrosion studies, J. Phys. Chem. B 101 (1997) 2519–2525.

DOI: 10.1021/jp970046n

Google Scholar

[51] J.-P. Petit, M. Mermoux, Y. Wouters, A. Galerie, C. Chemarin, Study of the thermal oxidation of Fe–15Cr by combined Raman and photoelectrochemical imaging, Mater. Sci. Forum. 461–464 (2004) 681–688.

DOI: 10.4028/www.scientific.net/msf.461-464.681

Google Scholar