[1]
A. Galerie, High temperature corrosion of chromia-forming iron, nickel and cobalt-base alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, fourth ed., Elsevier, The Netherlands, 2010, p.583–605.
DOI: 10.1016/b978-044452787-5.00076-7
Google Scholar
[2]
B. Baroux, La corrosion des métaux: passivité et corrosion localisée, Dunod, France, (2014).
DOI: 10.3917/dunod.barou.2014.01.0289
Google Scholar
[3]
Information on https://www.aperam.com/sites/default/files/documents/2018-07/Stainless-Steel-the-perfect-solution-for-sustainable-development.pdf.
Google Scholar
[4]
P. Lacombe, B. Baroux, G. Béranger, Stainless Steel, Les Editions de Physique, France, (1993).
Google Scholar
[5]
G.Y. Lai, High-Temperature Corrosion and Materials Applications, second ed., ASM International, USA, (2007).
Google Scholar
[6]
S. Chandra-ambhorn, P. Saranyachot, Effect of the H2 content in shielding gas on the microstructure and oxidation resistance of Fe–15.7 wt.% Cr–8.5 wt.% Mn steel GTA welds, J. Mater. Process. Technol. 268 (2019) 18–24.
DOI: 10.1016/j.jmatprotec.2019.01.004
Google Scholar
[7]
L. Antoni, A. Galerie, La corrosion sèche des métaux: cas industriels (M4 229), Techniques de l'Ingénieur, France.
DOI: 10.51257/a-v2-m4226
Google Scholar
[8]
A.J. Sedriks, Corrosion of Stainless Steels, second ed., John Wiley & Sons, USA, (1996).
Google Scholar
[9]
S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater. Sci. Technol. 23 (2007) 497–501.
DOI: 10.1179/174328407x168964
Google Scholar
[10]
B.A. Pint, High temperature corrosion of alumina-forming iron, nickel and cobalt-based alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, forth ed., Elsevier, The Netherlands, 2010, p.606–645.
DOI: 10.1016/b978-044452787-5.00077-9
Google Scholar
[11]
I.G. Wright, B.A. Pint, P.F. Tortorelli, High-temperature oxidation behavior of ODS–Fe3Al, Oxid. Met. 55 (2001) 333–357.
Google Scholar
[12]
J. Engkvist, S. Canovic, K. Hellström, A. Järdnäs, J.-E. Svensson, L.-G. Johansson, M. Olsson, M. Halvarsson, Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1,100 ºC in dry O2 and in O2 + H2O, Oxid. Met. 73 (2010) 233–253.
DOI: 10.1007/s11085-009-9177-7
Google Scholar
[13]
P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach, Trans Tech Publications, Switzerland, (2008).
Google Scholar
[14]
G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali, Thermal oxidation kinetics and oxide scale adhesion of Fe–15Cr alloys as a function of their silicon content, Acta Mater. 54 (2006) 3917–3922.
DOI: 10.1016/j.actamat.2006.04.023
Google Scholar
[15]
O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, sixth ed., Pergamon, England, (1993).
Google Scholar
[16]
Information on http://www.factsage.com.
Google Scholar
[17]
A. Col, V. Parry, C. Pascal, Oxidation of a Fe–18Cr–8Ni austenitic stainless steel at 850 ºC in O2: microstructure evolution during breakaway oxidation, Corros. Sci. 114 (2017) 17–27.
DOI: 10.1016/j.corsci.2016.10.029
Google Scholar
[18]
D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).
Google Scholar
[19]
Information on http://www.thermocalc.com.
Google Scholar
[20]
N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide, Pergamon, UK, (1998).
Google Scholar
[21]
H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: the Calphad Method, Cambridge University Press, UK, (2007).
DOI: 10.1017/cbo9780511804137
Google Scholar
[22]
P. Kofstad, High Temperature Corrosion, Elsevier, England, (1988).
Google Scholar
[23]
S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corros. Sci. 148 (2019) 355–365.
DOI: 10.1016/j.corsci.2018.12.030
Google Scholar
[24]
R.Y. Chen, W.Y.D. Yuen, A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling, Oxid. Met. 53 (2000) 539–560.
Google Scholar
[25]
B. Gleeson, High-temperature corrosion of metallic alloys and coatings, in: M. Schütze (Ed.), Corrosion and Environmental Degradation, Volume II, WILEY-VCH, Germany, 2000, p.173–228.
Google Scholar
[26]
C. Déportes, M. Duclot, P. Fabry, J. Fouletier, A. Hammou, M. Kleitz, E. Siebert, J.L. Souquet, Électrochimie des solides, Presses Universitaires de Grenoble, France, (1994).
Google Scholar
[27]
R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials, John Wiley & Sons, USA, (2005).
Google Scholar
[28]
E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, A.J. Thor, Quantity, Unit and Symbols in Physical Chemistry (IUPAC Green Book), third ed., IUPAC and RSC Publishing, UK, (2008).
DOI: 10.1039/9781847557889
Google Scholar
[29]
H.H. Skilling, Fundamentals of Electric Waves, second ed., John Wiley & Sons, Japan, (1948).
Google Scholar
[30]
S. Sze, M.-K. Lee, Semiconductor Devices, third ed., John Wiley & Sons, Singapore, (2013).
Google Scholar