CHAPTER 1 Thermodynamics and Kinetics of the High Temperature Oxidation of Stainless Steels

Article Preview

Abstract:

This chapter introduces stainless steels and their classification for the high temperature applications. The enabling theories for the high temperature corrosion i.e. thermodynamics and kinetics are further addressed. The basic concept of thermodynamics is given and the stability of the formation of thermal oxide on stainless steel is exemplified. Types of defect in the oxide and Fick’s first law for the diffusion of defect though the oxide are introduced. Oxidation kinetics is explained with the emphasis on the derivation of the parabolic rate law.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Galerie, High temperature corrosion of chromia-forming iron, nickel and cobalt-base alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, fourth ed., Elsevier, The Netherlands, 2010, p.583–605.

DOI: 10.1016/b978-044452787-5.00076-7

Google Scholar

[2] B. Baroux, La corrosion des métaux: passivité et corrosion localisée, Dunod, France, (2014).

DOI: 10.3917/dunod.barou.2014.01.0289

Google Scholar

[3] Information on https://www.aperam.com/sites/default/files/documents/2018-07/Stainless-Steel-the-perfect-solution-for-sustainable-development.pdf.

Google Scholar

[4] P. Lacombe, B. Baroux, G. Béranger, Stainless Steel, Les Editions de Physique, France, (1993).

Google Scholar

[5] G.Y. Lai, High-Temperature Corrosion and Materials Applications, second ed., ASM International, USA, (2007).

Google Scholar

[6] S. Chandra-ambhorn, P. Saranyachot, Effect of the H2 content in shielding gas on the microstructure and oxidation resistance of Fe–15.7 wt.% Cr–8.5 wt.% Mn steel GTA welds, J. Mater. Process. Technol. 268 (2019) 18–24.

DOI: 10.1016/j.jmatprotec.2019.01.004

Google Scholar

[7] L. Antoni, A. Galerie, La corrosion sèche des métaux: cas industriels (M4 229), Techniques de l'Ingénieur, France.

DOI: 10.51257/a-v2-m4226

Google Scholar

[8] A.J. Sedriks, Corrosion of Stainless Steels, second ed., John Wiley & Sons, USA, (1996).

Google Scholar

[9] S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater. Sci. Technol. 23 (2007) 497–501.

DOI: 10.1179/174328407x168964

Google Scholar

[10] B.A. Pint, High temperature corrosion of alumina-forming iron, nickel and cobalt-based alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, forth ed., Elsevier, The Netherlands, 2010, p.606–645.

DOI: 10.1016/b978-044452787-5.00077-9

Google Scholar

[11] I.G. Wright, B.A. Pint, P.F. Tortorelli, High-temperature oxidation behavior of ODS–Fe3Al, Oxid. Met. 55 (2001) 333–357.

Google Scholar

[12] J. Engkvist, S. Canovic, K. Hellström, A. Järdnäs, J.-E. Svensson, L.-G. Johansson, M. Olsson, M. Halvarsson, Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1,100 ºC in dry O2 and in O2 + H2O, Oxid. Met. 73 (2010) 233–253.

DOI: 10.1007/s11085-009-9177-7

Google Scholar

[13] P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach, Trans Tech Publications, Switzerland, (2008).

Google Scholar

[14] G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali, Thermal oxidation kinetics and oxide scale adhesion of Fe–15Cr alloys as a function of their silicon content, Acta Mater. 54 (2006) 3917–3922.

DOI: 10.1016/j.actamat.2006.04.023

Google Scholar

[15] O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, sixth ed., Pergamon, England, (1993).

Google Scholar

[16] Information on http://www.factsage.com.

Google Scholar

[17] A. Col, V. Parry, C. Pascal, Oxidation of a Fe–18Cr–8Ni austenitic stainless steel at 850 ºC in O2: microstructure evolution during breakaway oxidation, Corros. Sci. 114 (2017) 17–27.

DOI: 10.1016/j.corsci.2016.10.029

Google Scholar

[18] D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).

Google Scholar

[19] Information on http://www.thermocalc.com.

Google Scholar

[20] N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide, Pergamon, UK, (1998).

Google Scholar

[21] H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: the Calphad Method, Cambridge University Press, UK, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[22] P. Kofstad, High Temperature Corrosion, Elsevier, England, (1988).

Google Scholar

[23] S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corros. Sci. 148 (2019) 355–365.

DOI: 10.1016/j.corsci.2018.12.030

Google Scholar

[24] R.Y. Chen, W.Y.D. Yuen, A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling, Oxid. Met. 53 (2000) 539–560.

Google Scholar

[25] B. Gleeson, High-temperature corrosion of metallic alloys and coatings, in: M. Schütze (Ed.), Corrosion and Environmental Degradation, Volume II, WILEY-VCH, Germany, 2000, p.173–228.

Google Scholar

[26] C. Déportes, M. Duclot, P. Fabry, J. Fouletier, A. Hammou, M. Kleitz, E. Siebert, J.L. Souquet, Électrochimie des solides, Presses Universitaires de Grenoble, France, (1994).

Google Scholar

[27] R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials, John Wiley & Sons, USA, (2005).

Google Scholar

[28] E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, A.J. Thor, Quantity, Unit and Symbols in Physical Chemistry (IUPAC Green Book), third ed., IUPAC and RSC Publishing, UK, (2008).

DOI: 10.1039/9781847557889

Google Scholar

[29] H.H. Skilling, Fundamentals of Electric Waves, second ed., John Wiley & Sons, Japan, (1948).

Google Scholar

[30] S. Sze, M.-K. Lee, Semiconductor Devices, third ed., John Wiley & Sons, Singapore, (2013).

Google Scholar