[1]
S.A. Bradford, Fundamentals of corrosion in gases, in: ASM International Handbook Committee (Ed.), ASM Handbook Vol. 13, ninth ed., ASM International, USA, 1987, p.61–76.
Google Scholar
[2]
N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, UK, (2006).
Google Scholar
[3]
D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).
Google Scholar
[4]
H.E. Evans, Stress effects in high temperature oxidation of metals, Int. Mater. Rev. 40 (1995) 1–40.
Google Scholar
[5]
P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach, Trans Tech Publications, Switzerland, (2008).
Google Scholar
[6]
R.F. Tylecote, W.K. Appleby, Some factors influencing the adherence of oxides on metals, Mater. Corros. 23 (1972) 855–859.
DOI: 10.1002/maco.19720231002
Google Scholar
[7]
P.Y. Hou, J. Ager, J. Mougin, A. Galerie, Limitations and advantages of Raman spectroscopy for the determination of oxidation stresses, Oxid. Met. 75 (2011) 229–245.
DOI: 10.1007/s11085-011-9235-9
Google Scholar
[8]
J. Mougin, G. Lucazeau, A. Galerie, M. Dupeux, Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium, Mater. Sci. Eng., A 308 (2001) 118–123.
DOI: 10.1016/s0921-5093(00)02037-2
Google Scholar
[9]
S. Chandra-ambhorn, Y. Wouters, M. Dupeux, A. Galerie, L. Antoni, F. Toscan, Adhesion behaviour of thermal oxide scales grown on ferritic stainless steels proposed as interconnects in SOFCs, in: S.C. Singhal, J. Mizusaki (Eds.), Proceedings of The Electrochemical Society PV 2005–07, Canada, 2005, p.1816–1821.
DOI: 10.1149/ma2005-01/30/1199
Google Scholar
[10]
S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, J. Power Sources 171 (2007) 688–695.
DOI: 10.1016/j.jpowsour.2007.06.058
Google Scholar
[11]
H.E. Evans, A.M. Huntz, Methods of measuring oxidation growth stresses, Mater. High Temp. 12 (1994) 111–117.
Google Scholar
[12]
A.A. Griffith, The phenomenon of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A 221 (1921) 163–198.
Google Scholar
[13]
J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials, Adv. Appl. Mech. 29 (1992) 63–191.
Google Scholar
[14]
M. Braccini, Chapter 4 Interface adherence, in: M. Braccini, M. Dupeux (Eds.), Mechanics of Solid Interfaces, John Wiley & Sons, USA, 2012, p.101–127.
DOI: 10.1002/9781118561669.ch4
Google Scholar
[15]
G.R. Irwin, Relation of stresses near a crack to the crack extension force, Proceedings of the Ninth Congress of Applied Mechanics, Brussels, 1956, p.245–251.
Google Scholar
[16]
T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, third ed., CRC Press, USA, (2005).
Google Scholar
[17]
A. Galerie, F. Toscan, E. N'Dah, K. Przybylski, Y. Wouters, M. Dupeux, Measuring adhesion of Cr2O3 and Al2O3 scales on Fe-based alloys, Mater. Sci. Forum 461–464 (2004) 631–638.
DOI: 10.4028/www.scientific.net/msf.461-464.631
Google Scholar
[18]
H. Dannenberg, Measurement of adhesion by a blister method, J. Appl. Polym. Sci. 14 (1961) 125–134.
DOI: 10.1002/app.1961.070051401
Google Scholar
[19]
R.J. Hohlfelder, H. Luo, J.J. Vlassak, C.E.D. Chidsey, W.D. Nix, Measuring interfacial fracture toughness with the blister test. Mater. Res. Soc. Symp. Proc. 436 (1997) 115–120.
DOI: 10.1557/proc-436-115
Google Scholar
[20]
M. Dupeux, A. Bosseboeuf, Application of the blister test to adhesion energy measurements in metal/ceramic film-on-substrate systems, in: A. Bellosi, T. Kosmač, A.P. Tomsia (Eds.), Interfacial Science in Ceramic Joining, Springer, The Netherlands, 1998, p.319–327.
DOI: 10.1007/978-94-017-1917-9_27
Google Scholar
[21]
J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Adhesion of thermal oxide scales grown on ferritic strainless steels measured using the inverted blister test, Mater. Sci. Eng., A 359 (2003) 44–51.
DOI: 10.1016/s0921-5093(03)00355-1
Google Scholar
[22]
R.J. Hohlfelder, J.J. Vlassak, W.D. Nix, H. Luo, C.E.D. Chidsey, Blister test analysis methods, Mater. Res. Soc. Symp. Proc. 356 (1995) 585–590.
DOI: 10.1557/proc-356-585
Google Scholar
[23]
J. Mougin, M. Dupeux, A. Galerie, L. Antoni, Inverted blister test to measure adhesion energy of thermal oxide scales on metals or alloys, Mater. Sci. Technol. 18 (2002) 1217–1220.
DOI: 10.1179/026708302225006098
Google Scholar
[24]
A. Galerie, M. Dupeux, Y. Wouters, F. Toscan, Quantitative adhesion energy values of chromia-rich thermal oxides on stainless steels determined by blister and tensile tests, Mater. Sci. Forum 522–523 (2006) 441–450.
DOI: 10.4028/www.scientific.net/msf.522-523.441
Google Scholar
[25]
P.G. Charalambides, H.C. Cao, J. Lund, A.G. Evans, Development of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces, Mech. Mater. 8 (1990) 269–283.
DOI: 10.1016/0167-6636(90)90047-j
Google Scholar
[26]
I. Hofinger, M. Oechsner, H.-A. Bahr, M.V. Swain, Modified four-point bending specimen for determining the interface fracture energy for thin, brittle layers, Int. J. Fract. 92 (1998) 213–220.
DOI: 10.1023/a:1007530932726
Google Scholar
[27]
M. Zhe, O. Dezellus, G. Parry, M. Braccini, J.C. Viala, Modified 4-point bending test for adhesion measurement at the interface of iron coated with aluminum casting alloy, J. Adhes. Sci. Technol. 26 (2012) 1–17.
DOI: 10.1163/016942411x559049
Google Scholar
[28]
M.M. Nagl, W.T. Evans, D.J. Hall, S.R.J. Saunders, An in-situ investigation of the tensile failure of oxide scales, Oxid. Met. 42 (1994) 431–449.
Google Scholar
[29]
F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater. Sci. Forum 461–464 (2004) 705–712.
DOI: 10.4028/www.scientific.net/msf.461-464.705
Google Scholar
[30]
G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali, Thermal oxidation kinetics and oxide scale adhesion of Fe–15Cr alloys as a function of their silicon content, Acta Mater. 54 (2006) 3917–3922.
DOI: 10.1016/j.actamat.2006.04.023
Google Scholar
[31]
S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater. Sci. Technol. 23 (2007) 497–501.
DOI: 10.1179/174328407x168964
Google Scholar
[32]
S. Chandra-ambhorn, P. Promdirek, G. Lothongkum, Y. Wouters, A. Galerie, Comments on the quantification of mechanical adhesion energy of thermal oxide scale on metallic substrate using tensile test, Mater. Sci. Forum 595–598 (2008) 907–914.
DOI: 10.4028/www.scientific.net/msf.595-598.907
Google Scholar
[33]
S. Chandra-ambhorn, T. Nilsonthi, Y. Madi, A. Galerie, Application of the micro-tensile testing to investigate the adhesion of thermal oxide scales grown on AISI 441 stainless steel sheet oxidised in air and water vapour, Key Eng. Mater. 410–411 (2009) 187–193.
DOI: 10.4028/www.scientific.net/kem.410-411.187
Google Scholar
[34]
T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of thermal oxide scales on hot-rolled conventional and recycled steels, Oxid. Met. 79 (2013) 325–335.
DOI: 10.1007/s11085-012-9356-9
Google Scholar
[35]
S. Chandra-ambhorn, N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test, Oxid. Met. 85 (2016) 103–125.
DOI: 10.1007/s11085-015-9583-y
Google Scholar
[36]
T. Nilsonthi, W. Issaard, S. Chandra-ambhorn, Development of the scale adhesion assessment using a tensile testing machine equipped with a CCD camera, Oxid. Met. 88 (2017) 41–55.
DOI: 10.1007/s11085-016-9679-z
Google Scholar
[37]
N. Na Kalasin, S. Yenchum, T. Nilsonthi, Adhesion behaviour of scales on hot-rolled steel strips produced from continuous casting slabs, Mater. Today Proc. 5 (2018) 9359–9367.
DOI: 10.1016/j.matpr.2017.10.111
Google Scholar
[38]
E. Fedorova, M. Braccini, V. Parry, C. Pascal, M. Mantel, F. Roussel-Dherbey, D. Oquab, Y. Wouters, D. Monceau, Comparison of damaging behavior of oxide scales grown on austenitic stainless steels using tensile test and cyclic thermogravimetry, Corros. Sci. 103 (2016) 145–156.
DOI: 10.1016/j.corsci.2015.11.012
Google Scholar