CHAPTER 2 Mechanical Behaviour of Thermal Oxide Scales on Stainless Steels

Article Preview

Abstract:

The mechanical behaviour and adhesion properties of thermal oxide scales are key issues for steel processing and long-term durability. This chapter aims at taking up the various aspects to be considered for such studies. The first part is devoted to a description of the origin of stress and stress quantification. Then, description of mechanical failure and damaging patterns of thermal oxide scales will be given. Finally, definitions of adhesion energy as well as quantitative methods to measure adhesion energy will be proposed. An appendix describing the hypotheses and the constitutive equations for plane stress analysis, which suits to oxide scales, is also given The purpose is enriched by references in particular to Alain Galerie’s co-workers’ publications.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S.A. Bradford, Fundamentals of corrosion in gases, in: ASM International Handbook Committee (Ed.), ASM Handbook Vol. 13, ninth ed., ASM International, USA, 1987, p.61–76.

Google Scholar

[2] N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, UK, (2006).

Google Scholar

[3] D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).

Google Scholar

[4] H.E. Evans, Stress effects in high temperature oxidation of metals, Int. Mater. Rev. 40 (1995) 1–40.

Google Scholar

[5] P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach, Trans Tech Publications, Switzerland, (2008).

Google Scholar

[6] R.F. Tylecote, W.K. Appleby, Some factors influencing the adherence of oxides on metals, Mater. Corros. 23 (1972) 855–859.

DOI: 10.1002/maco.19720231002

Google Scholar

[7] P.Y. Hou, J. Ager, J. Mougin, A. Galerie, Limitations and advantages of Raman spectroscopy for the determination of oxidation stresses, Oxid. Met. 75 (2011) 229–245.

DOI: 10.1007/s11085-011-9235-9

Google Scholar

[8] J. Mougin, G. Lucazeau, A. Galerie, M. Dupeux, Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium, Mater. Sci. Eng., A 308 (2001) 118–123.

DOI: 10.1016/s0921-5093(00)02037-2

Google Scholar

[9] S. Chandra-ambhorn, Y. Wouters, M. Dupeux, A. Galerie, L. Antoni, F. Toscan, Adhesion behaviour of thermal oxide scales grown on ferritic stainless steels proposed as interconnects in SOFCs, in: S.C. Singhal, J. Mizusaki (Eds.), Proceedings of The Electrochemical Society PV 2005–07, Canada, 2005, p.1816–1821.

DOI: 10.1149/ma2005-01/30/1199

Google Scholar

[10] S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, J. Power Sources 171 (2007) 688–695.

DOI: 10.1016/j.jpowsour.2007.06.058

Google Scholar

[11] H.E. Evans, A.M. Huntz, Methods of measuring oxidation growth stresses, Mater. High Temp. 12 (1994) 111–117.

Google Scholar

[12] A.A. Griffith, The phenomenon of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A 221 (1921) 163–198.

Google Scholar

[13] J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials, Adv. Appl. Mech. 29 (1992) 63–191.

Google Scholar

[14] M. Braccini, Chapter 4 Interface adherence, in: M. Braccini, M. Dupeux (Eds.), Mechanics of Solid Interfaces, John Wiley & Sons, USA, 2012, p.101–127.

DOI: 10.1002/9781118561669.ch4

Google Scholar

[15] G.R. Irwin, Relation of stresses near a crack to the crack extension force, Proceedings of the Ninth Congress of Applied Mechanics, Brussels, 1956, p.245–251.

Google Scholar

[16] T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, third ed., CRC Press, USA, (2005).

Google Scholar

[17] A. Galerie, F. Toscan, E. N'Dah, K. Przybylski, Y. Wouters, M. Dupeux, Measuring adhesion of Cr2O3 and Al2O3 scales on Fe-based alloys, Mater. Sci. Forum 461–464 (2004) 631–638.

DOI: 10.4028/www.scientific.net/msf.461-464.631

Google Scholar

[18] H. Dannenberg, Measurement of adhesion by a blister method, J. Appl. Polym. Sci. 14 (1961) 125–134.

DOI: 10.1002/app.1961.070051401

Google Scholar

[19] R.J. Hohlfelder, H. Luo, J.J. Vlassak, C.E.D. Chidsey, W.D. Nix, Measuring interfacial fracture toughness with the blister test. Mater. Res. Soc. Symp. Proc. 436 (1997) 115–120.

DOI: 10.1557/proc-436-115

Google Scholar

[20] M. Dupeux, A. Bosseboeuf, Application of the blister test to adhesion energy measurements in metal/ceramic film-on-substrate systems, in: A. Bellosi, T. Kosmač, A.P. Tomsia (Eds.), Interfacial Science in Ceramic Joining, Springer, The Netherlands, 1998, p.319–327.

DOI: 10.1007/978-94-017-1917-9_27

Google Scholar

[21] J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Adhesion of thermal oxide scales grown on ferritic strainless steels measured using the inverted blister test, Mater. Sci. Eng., A 359 (2003) 44–51.

DOI: 10.1016/s0921-5093(03)00355-1

Google Scholar

[22] R.J. Hohlfelder, J.J. Vlassak, W.D. Nix, H. Luo, C.E.D. Chidsey, Blister test analysis methods, Mater. Res. Soc. Symp. Proc. 356 (1995) 585–590.

DOI: 10.1557/proc-356-585

Google Scholar

[23] J. Mougin, M. Dupeux, A. Galerie, L. Antoni, Inverted blister test to measure adhesion energy of thermal oxide scales on metals or alloys, Mater. Sci. Technol. 18 (2002) 1217–1220.

DOI: 10.1179/026708302225006098

Google Scholar

[24] A. Galerie, M. Dupeux, Y. Wouters, F. Toscan, Quantitative adhesion energy values of chromia-rich thermal oxides on stainless steels determined by blister and tensile tests, Mater. Sci. Forum 522–523 (2006) 441–450.

DOI: 10.4028/www.scientific.net/msf.522-523.441

Google Scholar

[25] P.G. Charalambides, H.C. Cao, J. Lund, A.G. Evans, Development of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces, Mech. Mater. 8 (1990) 269–283.

DOI: 10.1016/0167-6636(90)90047-j

Google Scholar

[26] I. Hofinger, M. Oechsner, H.-A. Bahr, M.V. Swain, Modified four-point bending specimen for determining the interface fracture energy for thin, brittle layers, Int. J. Fract. 92 (1998) 213–220.

DOI: 10.1023/a:1007530932726

Google Scholar

[27] M. Zhe, O. Dezellus, G. Parry, M. Braccini, J.C. Viala, Modified 4-point bending test for adhesion measurement at the interface of iron coated with aluminum casting alloy, J. Adhes. Sci. Technol. 26 (2012) 1–17.

DOI: 10.1163/016942411x559049

Google Scholar

[28] M.M. Nagl, W.T. Evans, D.J. Hall, S.R.J. Saunders, An in-situ investigation of the tensile failure of oxide scales, Oxid. Met. 42 (1994) 431–449.

Google Scholar

[29] F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater. Sci. Forum 461–464 (2004) 705–712.

DOI: 10.4028/www.scientific.net/msf.461-464.705

Google Scholar

[30] G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali, Thermal oxidation kinetics and oxide scale adhesion of Fe–15Cr alloys as a function of their silicon content, Acta Mater. 54 (2006) 3917–3922.

DOI: 10.1016/j.actamat.2006.04.023

Google Scholar

[31] S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater. Sci. Technol. 23 (2007) 497–501‏.

DOI: 10.1179/174328407x168964

Google Scholar

[32] S. Chandra-ambhorn, P. Promdirek, G. Lothongkum, Y. Wouters, A. Galerie, Comments on the quantification of mechanical adhesion energy of thermal oxide scale on metallic substrate using tensile test, Mater. Sci. Forum 595–598 (2008) 907–914.

DOI: 10.4028/www.scientific.net/msf.595-598.907

Google Scholar

[33] S. Chandra-ambhorn, T. Nilsonthi, Y. Madi, A. Galerie, Application of the micro-tensile testing to investigate the adhesion of thermal oxide scales grown on AISI 441 stainless steel sheet oxidised in air and water vapour, Key Eng. Mater. 410–411 (2009) 187–193.

DOI: 10.4028/www.scientific.net/kem.410-411.187

Google Scholar

[34] T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of thermal oxide scales on hot-rolled conventional and recycled steels, Oxid. Met. 79 (2013) 325–335.

DOI: 10.1007/s11085-012-9356-9

Google Scholar

[35] S. Chandra-ambhorn, N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test, Oxid. Met. 85 (2016) 103–125.

DOI: 10.1007/s11085-015-9583-y

Google Scholar

[36] T. Nilsonthi, W. Issaard, S. Chandra-ambhorn, Development of the scale adhesion assessment using a tensile testing machine equipped with a CCD camera, Oxid. Met. 88 (2017) 41–55.

DOI: 10.1007/s11085-016-9679-z

Google Scholar

[37] N. Na Kalasin, S. Yenchum, T. Nilsonthi, Adhesion behaviour of scales on hot-rolled steel strips produced from continuous casting slabs, Mater. Today Proc. 5 (2018) 9359–9367.

DOI: 10.1016/j.matpr.2017.10.111

Google Scholar

[38] E. Fedorova, M. Braccini, V. Parry, C. Pascal, M. Mantel, F. Roussel-Dherbey, D. Oquab, Y. Wouters, D. Monceau, Comparison of damaging behavior of oxide scales grown on austenitic stainless steels using tensile test and cyclic thermogravimetry, Corros. Sci. 103 (2016) 145–156.

DOI: 10.1016/j.corsci.2015.11.012

Google Scholar