[1]
S.R.J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Prog. Mater. Sci. 53 (2008) 775–837.
DOI: 10.1016/j.pmatsci.2007.11.001
Google Scholar
[2]
W.F. Quadakkers, F. Żurek, Oxidation in steam and steam/hydrogen environments, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, forth ed., Elsevier, The Netherlands, 2010, p.407–456.
DOI: 10.1016/b978-044452787-5.00022-6
Google Scholar
[3]
S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of process parameters on mechanical adhesion of thermal oxide scales on hot-rolled low carbon steels, Oxid. Met. 80 (2013) 61–72.
DOI: 10.1007/s11085-013-9370-6
Google Scholar
[4]
S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0.23 and 1.03 wt.% Si in Ar-20% H2O at 900 ºC, Corros. Sci. 87 (2014) 101–110.
DOI: 10.1016/j.corsci.2014.06.018
Google Scholar
[5]
S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, J. Power Sources 171 (2007) 688–695.
DOI: 10.1016/j.jpowsour.2007.06.058
Google Scholar
[6]
W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporisation from AISI 441 stainless steel oxidised in humidified oxygen, Oxid. Met. 79 (2013) 529–540.
DOI: 10.1007/s11085-013-9379-x
Google Scholar
[7]
W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corros. Sci. 106 (2016) 172–178.
DOI: 10.1016/j.corsci.2016.02.002
Google Scholar
[8]
A. Galerie, Y. Wouters, M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed?, Mater. Sci. Forum 369-372 (2001) 231–238.
DOI: 10.4028/www.scientific.net/msf.369-372.231
Google Scholar
[9]
O. Kubaschewski, E.LL. Evans, Metallurgical Thermochemistry, third ed. (reprinted), Pergamon, Great Britain, (1965).
Google Scholar
[10]
M. Ueda, Communication during seminar at Tokyo Institute of Technology, (2015).
Google Scholar
[11]
D. Caplan, M. Cohen, The volatilization of chromium oxide, J. Electrochem. Soc. 108 (1961) 438–442.
DOI: 10.1149/1.2428106
Google Scholar
[12]
R.T. Grimley, R.P. Burns, M.G. Inghram, Thermodynamics of the vaporization of Cr2O3: dissociation energies of CrO, CrO2, and CrO3, J. Chem. Phys. 34 (1961) 664–667.
DOI: 10.1016/0042-207x(62)90934-x
Google Scholar
[13]
C.S. Tedmon, The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys, J. Electrochem. Soc. 113 (1966) 766–768.
DOI: 10.1149/1.2424115
Google Scholar
[14]
C.A. Stearns, F.J. Kohl, G.C. Fryburg, Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000º to 1300 ºC, J. Electrochem. Soc. 121 (1974) 945–951.
DOI: 10.1149/1.2401958
Google Scholar
[15]
G.C. Fryburg, R.A. Miller, F.J. Kohl, C.A. Stearns, Volatile products in the corrosion of Cr, Mo, Ti, and four superalloys exposed to O2 containing H2O and gaseous NaCl, J. Electrochem. Soc. 124 (1977) 1738–1743.
DOI: 10.1149/1.2133147
Google Scholar
[16]
H. Asteman, J.-E. Svensson, L.-G. Johansson, M. Norell, Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor, Oxid. Met. 52 (1999) 95–111.
DOI: 10.1023/a:1018875024306
Google Scholar
[17]
H. Asteman, J.-E. Svensson, M. Norell, L.-G. Johansson, Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation, Oxid. Met. 54 (2000) 11–26.
Google Scholar
[18]
H. Asteman, J.-E. Svensson, L.-G. Johansson, Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate, Oxid. Met. 57 (2002) 193–216.
Google Scholar
[19]
H. Asteman, J.-E. Svensson, L.-G. Johansson, Oxidation of 310 steel in H2O/O2 mixtures at 600 ºC: the effect of water-vapour-enhanced chromium evaporation, Corros. Sci. 44 (2002) 2635–2649.
DOI: 10.1016/s0010-938x(02)00056-2
Google Scholar
[20]
A. Yamauchi, K. Kurokawa, H. Takahashi, Evaporation of Cr2O3 in atmospheres containing H2O, Oxid. Met. 59 (2003) 517–527.
Google Scholar
[21]
C. Gindorf, L. Singheiser, K. Hilpert, Vaporisation of chromia in humid air, J. Phys. Chem. Solids 66 (2005) 384–387.
DOI: 10.1016/j.jpcs.2004.06.092
Google Scholar
[22]
E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A 111 (2007) 1971–(1980).
DOI: 10.1021/jp0647380
Google Scholar
[23]
H. Kurokawa, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, Chromium vaporization of bare and of coated iron–chromium alloys at 1073 K, Solid State Ionics 178 (2007) 287–296.
DOI: 10.1016/j.ssi.2006.12.010
Google Scholar
[24]
M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, L. Singheiser, Chromium vaporization from high-temperature alloys I. chromia-forming steels and the influence of outer oxide layers, J. Electrochem. Soc. 154 (2007) A295–A306.
DOI: 10.1149/1.2434690
Google Scholar
[25]
D.J. Young, B.A. Pint, Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor, Oxid. Met. 66 (2006) 137–153.
DOI: 10.1007/s11085-006-9030-1
Google Scholar
[26]
R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, USA, (2002).
Google Scholar
[27]
D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).
Google Scholar
[28]
P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere, Oxid. Met. 81 (2014) 315–329.
DOI: 10.1007/s11085-013-9432-9
Google Scholar
[29]
P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Behaviour of ferritic stainless steels subjected to dry gas atmospheres at high temperatures, Mater. Corros. 62 (2011) 616–622.
DOI: 10.1002/maco.201005878
Google Scholar
[30]
P. Promdirek, G. Lothongkum, Y. Wouters, S. Chandra-ambhorn, A. Galerie, Effect of humidity on the corrosion kinetics of ferritic stainless steels subjected to synthetic biogas, Mater. Sci. Forum 696 (2011) 417–422.
DOI: 10.4028/www.scientific.net/msf.696.417
Google Scholar
[31]
S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corros. Sci. 148 (2019) 355–365.
DOI: 10.1016/j.corsci.2018.12.030
Google Scholar
[32]
M. Hänsel, W.J. Quadakkers, D.J. Young, Role of water vapor in chromia-scale growth at low oxygen partial pressure, Oxid. Met. 59 (2003) 285–301.
Google Scholar
[33]
S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe–15.7 wt.% Cr–8.5 wt.% Mn in oxygen without and with water vapour at 700 ºC, Corros. Sci. 148 (2019) 39–47.
DOI: 10.1016/j.corsci.2018.11.023
Google Scholar
[34]
W. Zhang, B. Hua, J. Yang, B. Chi, J. Pu, L. Jian, Performance evaluation of a new Fe–Cr–Mn alloy in the reducing atmosphere of solid oxide fuel cells, J. Alloys Compd. 769 (2018) 866–872.
DOI: 10.1016/j.jallcom.2018.08.002
Google Scholar
[35]
T. Norby, Protonic defects in oxides and their possible role in high temperature oxidation, J. Phys. IV Colloque 3 (1993) 99–106.
DOI: 10.1051/jp4:1993907
Google Scholar
[36]
B. Tveten, G. Hultquist, T. Norby, Hydrogen in chromium: influence on the high-temperature oxidation kinetics in O2, oxide-growth mechanisms, and scale adherence, Oxid. Met. 51 (1999) 221–233.
Google Scholar
[37]
A. Galerie, M.R. Ardigo, P. Berthod, W. Chandra-ambhorn, S. Chevalier, P.Y. Hou, F. Rouillard, Chapter1 Influence of water vapour on high-temperature oxidation of chromia-forming materials, in: S. Chevalier, J. Favergeon (Eds.), French Activity on high temperature corrosion in water vapor, Trans tech publications, Switzerland, 2014, p.1–25.
DOI: 10.4028/www.scientific.net/ddf.323-325.239
Google Scholar
[38]
Y. Wouters, A. Galerie, J.-P. Petit, Thermal oxidation of titanium by water vapour, Solid State Ionics 104 (1997) 89–96.
DOI: 10.1016/s0167-2738(97)00400-1
Google Scholar
[39]
A. Galerie, J.-P. Petit, Y. Wouters, J. Mougin, A. Srisrual, P.-Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Mater. Sci. Forum 696 (2011) 200–205.
DOI: 10.4028/www.scientific.net/msf.696.200
Google Scholar
[40]
G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz, S. Chevalier, Inverse growth transport in thermal chromia scales on Fe–15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scr. Mater. 57 (2007) 671–674.
DOI: 10.1016/j.scriptamat.2007.06.050
Google Scholar
[41]
C. Issartel, H. Buscail, Y. Wang, R. Rolland, M. Vilasi, L. Aranda, Water vapour effect on ferritic 4509 steel oxidation between 800 and 1000 ºC, Oxid. Met. 76 (2011) 127–147.
DOI: 10.1007/s11085-011-9242-x
Google Scholar
[42]
S. Henry, Influence de la vapeur d'eau sur l'oxydation à haute température du chrome et de quelques aciers inoxydables ferritiques stabilisées, PhD Thesis, Institut National Polytechnique de Grenoble, France, (2000).
Google Scholar
[43]
A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit, L. Antoni, Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour, Mater. High Temp. 21 (2005) 105–112.
DOI: 10.3184/096034005782750527
Google Scholar
[44]
A. Galerie, Y. Wouters , M. Pijolat, F. Valdivieso, M. Soustelle, T. Magnin, D. Delafosse, C. Bosch, B. Bayle, Mechanisms of corrosion and oxidation of metals and alloys, Adv. Eng. Mater. 3 (2001) 555–561.
DOI: 10.1002/1527-2648(200108)3:8<555::aid-adem555>3.0.co;2-e
Google Scholar
[45]
S. Henry, A. Galerie, L. Antoni, Abnormal oxidation of stabilized ferritic stainless steels in water vapor, Mater. Sci. Forum 369-372 (2001) 353–360.
DOI: 10.4028/www.scientific.net/msf.369-372.353
Google Scholar
[46]
N.K. Othman, N. Othman, J. Zhang, D.J. Young, Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres, Corros. Sci. 51 (2009) 3039–3049.
DOI: 10.1016/j.corsci.2009.08.032
Google Scholar
[47]
J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corros. Sci. 48 (2006) 3428–3454.
DOI: 10.1016/j.corsci.2006.02.002
Google Scholar
[48]
K. Segerdahl, J.-E. Svensson, M. Halvarsson, I. Panas, L.-G. Johansson, Breakdown of the protective oxide on 11% Cr steel at high temperature in the presence of water vapor and oxygen, the influence of chromium vaporization, Mater. High Temp. 21 (2005) 69–78.
DOI: 10.3184/096034005782750572
Google Scholar
[49]
N.K. Othman, J. Zhang, D.J. Young, Water vapour effects on Fe–Cr alloy oxidation, Oxid. Met. 73 (2010) 337–352.
DOI: 10.1007/s11085-009-9183-9
Google Scholar
[50]
E. Essuman, G.H. Meier, J. Żurek, M. Hänsel, W.J. Quadakkers, The effect of water vapor on selective oxidation of Fe–Cr alloys, Oxid. Met. 69 (2008)143–162.
DOI: 10.1007/s11085-007-9090-x
Google Scholar
[51]
E. Essuman, G.H. Meier, J. Żurek, M. Hänsel, L. Singheiser, W.J. Quadakkers, Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor, Scr. Mater. 57 (2007) 845–848.
DOI: 10.1016/j.scriptamat.2007.06.058
Google Scholar
[52]
M.H.B. Ani, T. Kodama, M. Ueda, K. Kawamura, T. Maruyama, The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K, Mater. Trans. 50 (2009) 2656–2663.
DOI: 10.2320/matertrans.m2009212
Google Scholar
[53]
X. Cheng, Z. Jiang, D. Wei, L. Hao, J. Zhao, J. Peng, S. Lu, L. Jiang, Effect of water vapor on oxidation of ferritic stainless steel 21Cr-0.6Mo-Nb-Ti in simulated reheating environment, Adv. Mater. Res. 690–693 (2013) 280–289.
DOI: 10.4028/www.scientific.net/amr.690-693.280
Google Scholar
[54]
Y.P. Jacob, V.A.C. Haanappel, M.F. Stroosnijder, H. Buscail, P. Fielitz, G. Borchardt, The effect of gas composition on the isothermal oxidation behaviour of PM chromium, Corros. Sci. 44 (2002) 2027–(2039).
DOI: 10.1016/s0010-938x(02)00022-7
Google Scholar
[55]
I. Kvernes, M. Oliveira, P. Kofstad, High temperature oxidation of Fe–13Cr–xAl alloys in air/H2O vapour mixtures, Corros. Sci. 17 (1977) 237–252.
DOI: 10.1016/0010-938x(77)90049-x
Google Scholar
[56]
T. Åkermark, G. Hultquist, Oxygen exchange in oxidation of an Fe–20Cr–10Al alloy in ~10 mbar O2/H2O-gas mixtures at 920 ºC, Oxid. Met. 47 (1997) 117–137.
DOI: 10.1007/bf01682374
Google Scholar
[57]
Z. Liu, T. Narita, Oxidation behavior of TiAl(Cr, Ag) at 900 ºC in water vapor, Intermetallics 12 (2004) 459–468.
DOI: 10.1016/j.intermet.2003.10.008
Google Scholar
[58]
K. Onal, M.C. Maris-Sida, G.H. Meier, F.S. Pettit, Water vapor effects on the cyclic oxidation resistance of alumina forming alloys, Mater. High Temp. 20 (2003) 327–337.
DOI: 10.1179/mht.2003.039
Google Scholar
[59]
R. Janakiraman, G.H. Meier, F.S. Pettit,The effect of water vapor on the oxidation of alloys that develop alumina scales for protection, Metall. Mater. Trans. A 30 (1999) 2905–2913.
DOI: 10.1007/s11661-999-0128-3
Google Scholar
[60]
H. Götlind, F. Liu, J.-E. Svensson, M. Halvarsson, L.-G. Johansson, The effect of water vapor on the initial stages of oxidation of the FeCrAl alloy Kanthal AF at 900 ºC, Oxid. Met. 67 (2007) 251–266.
DOI: 10.1007/s11085-007-9055-0
Google Scholar