CHAPTER 5 Effect of Water Vapour on the High Temperature Oxidation of Stainless Steels

Article Preview

Abstract:

This chapter primarily reviews the nature of water vapour when it presents in bulk gas. The change in a ratio between water vapour and corresponding dissociated hydrogen, which determine the thermodynamic stability of the oxide formation, is analysed when the oxidation kinetics are linear and parabolic. When water vapour reaches the solid/gas interface, chromium species volatilisation and oxidation controlled by surface reaction can occur. The adsorbed water vapour can be further incorporated into the oxide possibly in the form of hydrogen defects. The role of these defects on altering the defect structure of the oxide is discussed. Finally, characteristics of the oxide scale on stainless steels formed in the atmosphere containing water vapour are reviewed.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S.R.J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Prog. Mater. Sci. 53 (2008) 775–837.

DOI: 10.1016/j.pmatsci.2007.11.001

Google Scholar

[2] W.F. Quadakkers, F. Żurek, Oxidation in steam and steam/hydrogen environments, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.), Shreir's Corrosion, forth ed., Elsevier, The Netherlands, 2010, p.407–456.

DOI: 10.1016/b978-044452787-5.00022-6

Google Scholar

[3] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of process parameters on mechanical adhesion of thermal oxide scales on hot-rolled low carbon steels, Oxid. Met. 80 (2013) 61–72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[4] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0.23 and 1.03 wt.% Si in Ar-20% H2O at 900 ºC, Corros. Sci. 87 (2014) 101–110.

DOI: 10.1016/j.corsci.2014.06.018

Google Scholar

[5] S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, J. Power Sources 171 (2007) 688–695.

DOI: 10.1016/j.jpowsour.2007.06.058

Google Scholar

[6] W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporisation from AISI 441 stainless steel oxidised in humidified oxygen, Oxid. Met. 79 (2013) 529–540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar

[7] W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corros. Sci. 106 (2016) 172–178.

DOI: 10.1016/j.corsci.2016.02.002

Google Scholar

[8] A. Galerie, Y. Wouters, M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed?, Mater. Sci. Forum 369-372 (2001) 231–238.

DOI: 10.4028/www.scientific.net/msf.369-372.231

Google Scholar

[9] O. Kubaschewski, E.LL. Evans, Metallurgical Thermochemistry, third ed. (reprinted), Pergamon, Great Britain, (1965).

Google Scholar

[10] M. Ueda, Communication during seminar at Tokyo Institute of Technology, (2015).

Google Scholar

[11] D. Caplan, M. Cohen, The volatilization of chromium oxide, J. Electrochem. Soc. 108 (1961) 438–442.

DOI: 10.1149/1.2428106

Google Scholar

[12] R.T. Grimley, R.P. Burns, M.G. Inghram, Thermodynamics of the vaporization of Cr2O3: dissociation energies of CrO, CrO2, and CrO3, J. Chem. Phys. 34 (1961) 664–667.

DOI: 10.1016/0042-207x(62)90934-x

Google Scholar

[13] C.S. Tedmon, The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys, J. Electrochem. Soc. 113 (1966) 766–768.

DOI: 10.1149/1.2424115

Google Scholar

[14] C.A. Stearns, F.J. Kohl, G.C. Fryburg, Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000º to 1300 ºC, J. Electrochem. Soc. 121 (1974) 945–951.

DOI: 10.1149/1.2401958

Google Scholar

[15] G.C. Fryburg, R.A. Miller, F.J. Kohl, C.A. Stearns, Volatile products in the corrosion of Cr, Mo, Ti, and four superalloys exposed to O2 containing H2O and gaseous NaCl, J. Electrochem. Soc. 124 (1977) 1738–1743.

DOI: 10.1149/1.2133147

Google Scholar

[16] H. Asteman, J.-E. Svensson, L.-G. Johansson, M. Norell, Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor, Oxid. Met. 52 (1999) 95–111.

DOI: 10.1023/a:1018875024306

Google Scholar

[17] H. Asteman, J.-E. Svensson, M. Norell, L.-G. Johansson, Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation, Oxid. Met. 54 (2000) 11–26.

Google Scholar

[18] H. Asteman, J.-E. Svensson, L.-G. Johansson, Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate, Oxid. Met. 57 (2002) 193–216.

Google Scholar

[19] H. Asteman, J.-E. Svensson, L.-G. Johansson, Oxidation of 310 steel in H2O/O2 mixtures at 600 ºC: the effect of water-vapour-enhanced chromium evaporation, Corros. Sci. 44 (2002) 2635–2649.

DOI: 10.1016/s0010-938x(02)00056-2

Google Scholar

[20] A. Yamauchi, K. Kurokawa, H. Takahashi, Evaporation of Cr2O3 in atmospheres containing H2O, Oxid. Met. 59 (2003) 517–527.

Google Scholar

[21] C. Gindorf, L. Singheiser, K. Hilpert, Vaporisation of chromia in humid air, J. Phys. Chem. Solids 66 (2005) 384–387.

DOI: 10.1016/j.jpcs.2004.06.092

Google Scholar

[22] E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A 111 (2007) 1971–(1980).

DOI: 10.1021/jp0647380

Google Scholar

[23] H. Kurokawa, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, Chromium vaporization of bare and of coated iron–chromium alloys at 1073 K, Solid State Ionics 178 (2007) 287–296.

DOI: 10.1016/j.ssi.2006.12.010

Google Scholar

[24] M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, L. Singheiser, Chromium vaporization from high-temperature alloys I. chromia-forming steels and the influence of outer oxide layers, J. Electrochem. Soc. 154 (2007) A295–A306.

DOI: 10.1149/1.2434690

Google Scholar

[25] D.J. Young, B.A. Pint, Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor, Oxid. Met. 66 (2006) 137–153.

DOI: 10.1007/s11085-006-9030-1

Google Scholar

[26] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, USA, (2002).

Google Scholar

[27] D.J. Young, High Temperature Oxidation and Corrosion of Metals, second ed., Elsevier, The Netherlands, (2016).

Google Scholar

[28] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere, Oxid. Met. 81 (2014) 315–329.

DOI: 10.1007/s11085-013-9432-9

Google Scholar

[29] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Behaviour of ferritic stainless steels subjected to dry gas atmospheres at high temperatures, Mater. Corros. 62 (2011) 616–622.

DOI: 10.1002/maco.201005878

Google Scholar

[30] P. Promdirek, G. Lothongkum, Y. Wouters, S. Chandra-ambhorn, A. Galerie, Effect of humidity on the corrosion kinetics of ferritic stainless steels subjected to synthetic biogas, Mater. Sci. Forum 696 (2011) 417–422.

DOI: 10.4028/www.scientific.net/msf.696.417

Google Scholar

[31] S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corros. Sci. 148 (2019) 355–365.

DOI: 10.1016/j.corsci.2018.12.030

Google Scholar

[32] M. Hänsel, W.J. Quadakkers, D.J. Young, Role of water vapor in chromia-scale growth at low oxygen partial pressure, Oxid. Met. 59 (2003) 285–301.

Google Scholar

[33] S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe–15.7 wt.% Cr–8.5 wt.% Mn in oxygen without and with water vapour at 700 ºC, Corros. Sci. 148 (2019) 39–47.

DOI: 10.1016/j.corsci.2018.11.023

Google Scholar

[34] W. Zhang, B. Hua, J. Yang, B. Chi, J. Pu, L. Jian, Performance evaluation of a new Fe–Cr–Mn alloy in the reducing atmosphere of solid oxide fuel cells, J. Alloys Compd. 769 (2018) 866–872.

DOI: 10.1016/j.jallcom.2018.08.002

Google Scholar

[35] T. Norby, Protonic defects in oxides and their possible role in high temperature oxidation, J. Phys. IV Colloque 3 (1993) 99–106.

DOI: 10.1051/jp4:1993907

Google Scholar

[36] B. Tveten, G. Hultquist, T. Norby, Hydrogen in chromium: influence on the high-temperature oxidation kinetics in O2, oxide-growth mechanisms, and scale adherence, Oxid. Met. 51 (1999) 221–233.

Google Scholar

[37] A. Galerie, M.R. Ardigo, P. Berthod, W. Chandra-ambhorn, S. Chevalier, P.Y. Hou, F. Rouillard, Chapter1 Influence of water vapour on high-temperature oxidation of chromia-forming materials, in: S. Chevalier, J. Favergeon (Eds.), French Activity on high temperature corrosion in water vapor, Trans tech publications, Switzerland, 2014, p.1–25.

DOI: 10.4028/www.scientific.net/ddf.323-325.239

Google Scholar

[38] Y. Wouters, A. Galerie, J.-P. Petit, Thermal oxidation of titanium by water vapour, Solid State Ionics 104 (1997) 89–96.

DOI: 10.1016/s0167-2738(97)00400-1

Google Scholar

[39] A. Galerie, J.-P. Petit, Y. Wouters, J. Mougin, A. Srisrual, P.-Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Mater. Sci. Forum 696 (2011) 200–205.

DOI: 10.4028/www.scientific.net/msf.696.200

Google Scholar

[40] G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz, S. Chevalier, Inverse growth transport in thermal chromia scales on Fe–15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scr. Mater. 57 (2007) 671–674.

DOI: 10.1016/j.scriptamat.2007.06.050

Google Scholar

[41] C. Issartel, H. Buscail, Y. Wang, R. Rolland, M. Vilasi, L. Aranda, Water vapour effect on ferritic 4509 steel oxidation between 800 and 1000 ºC, Oxid. Met. 76 (2011) 127–147.

DOI: 10.1007/s11085-011-9242-x

Google Scholar

[42] S. Henry, Influence de la vapeur d'eau sur l'oxydation à haute température du chrome et de quelques aciers inoxydables ferritiques stabilisées, PhD Thesis, Institut National Polytechnique de Grenoble, France, (2000).

Google Scholar

[43] A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit, L. Antoni, Mechanisms of chromia scale failure during the course of 15–18Cr ferritic stainless steel oxidation in water vapour, Mater. High Temp. 21 (2005) 105–112.

DOI: 10.3184/096034005782750527

Google Scholar

[44] A. Galerie, Y. Wouters , M. Pijolat, F. Valdivieso, M. Soustelle, T. Magnin, D. Delafosse, C. Bosch, B. Bayle, Mechanisms of corrosion and oxidation of metals and alloys, Adv. Eng. Mater. 3 (2001) 555–561.

DOI: 10.1002/1527-2648(200108)3:8<555::aid-adem555>3.0.co;2-e

Google Scholar

[45] S. Henry, A. Galerie, L. Antoni, Abnormal oxidation of stabilized ferritic stainless steels in water vapor, Mater. Sci. Forum 369-372 (2001) 353–360.

DOI: 10.4028/www.scientific.net/msf.369-372.353

Google Scholar

[46] N.K. Othman, N. Othman, J. Zhang, D.J. Young, Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres, Corros. Sci. 51 (2009) 3039–3049.

DOI: 10.1016/j.corsci.2009.08.032

Google Scholar

[47] J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corros. Sci. 48 (2006) 3428–3454.

DOI: 10.1016/j.corsci.2006.02.002

Google Scholar

[48] K. Segerdahl, J.-E. Svensson, M. Halvarsson, I. Panas, L.-G. Johansson, Breakdown of the protective oxide on 11% Cr steel at high temperature in the presence of water vapor and oxygen, the influence of chromium vaporization, Mater. High Temp. 21 (2005) 69–78.

DOI: 10.3184/096034005782750572

Google Scholar

[49] N.K. Othman, J. Zhang, D.J. Young, Water vapour effects on Fe–Cr alloy oxidation, Oxid. Met. 73 (2010) 337–352.

DOI: 10.1007/s11085-009-9183-9

Google Scholar

[50] E. Essuman, G.H. Meier, J. Żurek, M. Hänsel, W.J. Quadakkers, The effect of water vapor on selective oxidation of Fe–Cr alloys, Oxid. Met. 69 (2008)143–162.

DOI: 10.1007/s11085-007-9090-x

Google Scholar

[51] E. Essuman, G.H. Meier, J. Żurek, M. Hänsel, L. Singheiser, W.J. Quadakkers, Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor, Scr. Mater. 57 (2007) 845–848.

DOI: 10.1016/j.scriptamat.2007.06.058

Google Scholar

[52] M.H.B. Ani, T. Kodama, M. Ueda, K. Kawamura, T. Maruyama, The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K, Mater. Trans. 50 (2009) 2656–2663.

DOI: 10.2320/matertrans.m2009212

Google Scholar

[53] X. Cheng, Z. Jiang, D. Wei, L. Hao, J. Zhao, J. Peng, S. Lu, L. Jiang, Effect of water vapor on oxidation of ferritic stainless steel 21Cr-0.6Mo-Nb-Ti in simulated reheating environment, Adv. Mater. Res. 690–693 (2013) 280–289.

DOI: 10.4028/www.scientific.net/amr.690-693.280

Google Scholar

[54] Y.P. Jacob, V.A.C. Haanappel, M.F. Stroosnijder, H. Buscail, P. Fielitz, G. Borchardt, The effect of gas composition on the isothermal oxidation behaviour of PM chromium, Corros. Sci. 44 (2002) 2027–(2039).

DOI: 10.1016/s0010-938x(02)00022-7

Google Scholar

[55] I. Kvernes, M. Oliveira, P. Kofstad, High temperature oxidation of Fe–13Cr–xAl alloys in air/H2O vapour mixtures, Corros. Sci. 17 (1977) 237–252.

DOI: 10.1016/0010-938x(77)90049-x

Google Scholar

[56] T. Åkermark, G. Hultquist, Oxygen exchange in oxidation of an Fe–20Cr–10Al alloy in ~10 mbar O2/H2O-gas mixtures at 920 ºC, Oxid. Met. 47 (1997) 117–137.

DOI: 10.1007/bf01682374

Google Scholar

[57] Z. Liu, T. Narita, Oxidation behavior of TiAl(Cr, Ag) at 900 ºC in water vapor, Intermetallics 12 (2004) 459–468.

DOI: 10.1016/j.intermet.2003.10.008

Google Scholar

[58] K. Onal, M.C. Maris-Sida, G.H. Meier, F.S. Pettit, Water vapor effects on the cyclic oxidation resistance of alumina forming alloys, Mater. High Temp. 20 (2003) 327–337.

DOI: 10.1179/mht.2003.039

Google Scholar

[59] R. Janakiraman, G.H. Meier, F.S. Pettit,The effect of water vapor on the oxidation of alloys that develop alumina scales for protection, Metall. Mater. Trans. A 30 (1999) 2905–2913.

DOI: 10.1007/s11661-999-0128-3

Google Scholar

[60] H. Götlind, F. Liu, J.-E. Svensson, M. Halvarsson, L.-G. Johansson, The effect of water vapor on the initial stages of oxidation of the FeCrAl alloy Kanthal AF at 900 ºC, Oxid. Met. 67 (2007) 251–266.

DOI: 10.1007/s11085-007-9055-0

Google Scholar