The Influence of Structural Properties on the Electrochemical Performance of Surface-Modified Ordered Carbon

Article Preview

Abstract:

Ordered carbon was prepared via nanocasting method with Santa Barbara Amorphous (SBA)-15 as the template and sucrose as the carbon precursor. The ordered carbon surface was then modified with oxygen and nitrogen species to alter its chemical and physical properties. All surface-modified ordered carbon samples were evaluated using nitrogen adsorption-desorption analyser and electrochemical impedance spectroscopy. Post modifications, the KOH electrolyte ion transportation are affected due to significant change in the ordered carbon structural properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

131-135

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wu, X. Hong, J. Nan, Z. Luo, Q. Zhang, L. Li, H. Chen, K.S. Hui, Electrochemical double-layer capacitor performance of novel carbons derived from SAPO zeolite templates, Microporous and Mesoporous Materials. 160 (2012) 25-31.

DOI: 10.1016/j.micromeso.2012.04.013

Google Scholar

[2] T. Matsui, S. Tanaka, Y. Miyake, Correlation between the capacitor performance and pore structure of ordered mesoporous carbons, Advanced Powder Technology. 24 (2013) 737-742.

DOI: 10.1016/j.apt.2013.03.003

Google Scholar

[3] V.K. Saini, M. Andrade, M.L. Pinto, A.P. Carvalho, J. Pires, How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica, Separation and Purification Technology. 75 (2010) 366-376.

DOI: 10.1016/j.seppur.2010.09.006

Google Scholar

[4] K.P. Gierszal, M. Jaroniec, T.W. Kim, J. Kim, R. Ryoo, High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. New J. Chem. 32 (2008) 981-993.

DOI: 10.1039/b716735k

Google Scholar

[5] M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, Characterization of ordered mesoporous carbons synthesised using MCM-48 silicas as templates. J. Phys. Chem B. 104 (2000) 7960-7968.

DOI: 10.1021/jp000861u

Google Scholar

[6] A. Vinu, P. Srinivasu, M. Takahashi, T. Mori, V.V. Balasubramanian, K. Ariga, Controlling the Textural Parameters of Mesoporous Carbon Materials. Microporous and Mesoporous Materials. 100 (2007) 20-26.

DOI: 10.1016/j.micromeso.2006.10.008

Google Scholar

[7] X. Wu, X. Hong, Z. Luo, K.S. Hui, H. Chen, J. Wu, K.N. Hui, L. Li, J. Nan, Q. Zhang, The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template. Electrochimica Acta. 89 (2013) 400-406.

DOI: 10.1016/j.electacta.2012.11.067

Google Scholar

[8] H. Li, H. Xi, S. Zhu, Z. Wen, R. Wang, Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous and Mesoporous Materials. 96 (2006) 357-362.

DOI: 10.1016/j.micromeso.2006.07.021

Google Scholar

[9] F. Lufrano, P. Staiti, Influence of the surface-chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors. Energy Fuels. 24 (2010) 3313-3320.

DOI: 10.1021/ef901447y

Google Scholar

[10] P.X. Hou, H. Orikasa, T. Yamazaki, K. Matsuoka, A. Tomita, N. Setoyama, Y. Fukushima, T. Kyotani, synthesis of nitrogen-containing microporous carbon with a highly ordered structure and effect of nitrogen doping on H2O adsorption. Chem. Mater. 17 (2005) 5187.

DOI: 10.1021/cm051094k

Google Scholar

[11] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 103 (1999) 7743.

DOI: 10.1021/jp991673a

Google Scholar

[12] D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen and oxygen containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19 (2009) 438-447.

DOI: 10.1002/adfm.200801236

Google Scholar

[13] J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources. 158 (2006) 765.

DOI: 10.1016/j.jpowsour.2005.09.008

Google Scholar

[14] F. Lufrano, P. Staiti, Influence of the surface‒chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors. Energy Fuels 24 (2010) 3313.

DOI: 10.1021/ef901447y

Google Scholar

[15] H.M. Lee, H.G. Kim, S.J. Kang, S.J. Park, K.H. An, B.J. Kim, Effect of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers. J. Ind. Eng. Chem. 21 (2015) 736.

DOI: 10.1016/j.jiec.2014.04.004

Google Scholar

[16] E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Béguin, Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta. 51 (2006) 2209-2214.

DOI: 10.1016/j.electacta.2005.04.080

Google Scholar