Structural Studies and Ionic Transport Properties of Solid Biopolymer Electrolytes Based on Chitosan/ Methyl Cellulose Blend Doped with BMIMTFSI

Article Preview

Abstract:

Fourier Transform Infrared (FT-IR), was applied to investigate the complexation, structural, ionic transport properties and dominant charge carrier species in Chitosan (CS) / Methyl Cellulose (MC) blend doped with 1 – butyl – 3 – methylimidazolium bis (trifluorosulfonyl) imide (BMIMTFSI) solid biopolymer electrolytes (SBEs) which have been prepared via solution casting technique. Samples were partially opaque in appearance with no phase separation. The occurrence of interactions between the host polymer CS/MC blend and ionic dopant BMIMTFSI were proven by FT-IR analysis from the shift in C-O band in 1049 cm-1. The FTIR spectrum in the region between 1080 and 980 cm−1 were deconvoluted using Origin 8 software to disclose the percentage of free mobile ions and contact ion of the samples. Ionic transport properties analysis reveals that the ionic conductivity is dependent on the ionic mobility (μ) and diffusion of ions (D).Keywords: Biopolymer Electrolyte; Polymer Blend; Chitosan, Methylcellulose; BMITFSI; Ion transport.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

119-124

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Misenan M.S.M. and A.S.A. Khiar (2018). Conductivity, Dielectric And Modulus Studies of Methylcellulose-NH4TF Polymer Electrolyte. Eurasian J. Bio. Chem. Sci. 1(2): 59-62.

Google Scholar

[2] Vincent C A (1987). Polymer electrolytes. Progress In Solid State Chemistry. 17(3):145-261. https://doi.org/10.1016/0079-6786(87)90003-3.

DOI: 10.1016/0079-6786(87)90003-3

Google Scholar

[3] Buraidah, M H, A K Arof. ( 2011). Characterization of chitosan/PVA blended electrolyte doped with NH4I. Journal of Non-Crystalline Solids. 357 : 3261-3266.

DOI: 10.1016/j.jnoncrysol.2011.05.021

Google Scholar

[4] Kadir M F Z, L P Teo, S R Majid, A K Arof. (2009). Conductivity studies on plasticized PEO/chitosan proton conducting polymer electrolyte, Materials Research Innovations. 13:191-194.

DOI: 10.1179/143307509x440460

Google Scholar

[5] Pinotti A, M A Garcia, M N Martino, N E Zarithzky. (2007). Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids. 21:66-72.

DOI: 10.1016/j.foodhyd.2006.02.001

Google Scholar

[6] Tian, H, A, Z Tang, X. Zhuang, X. Chen. (2011). Biodegradable Synthetic Polymers: Preparation, Functionalization and Biomedical Application. Progress In Polymer Science. 37 (2): 237- 280.

DOI: 10.1016/j.progpolymsci.2011.06.004

Google Scholar

[7] Kadir, M F Z., S R Majid, A K Arof. (2010). Plasticized Chitosan-PVA blend Polymer Electrolyte Based Proton Battery. Electrochemica Acta. 55: 1475-1482.

DOI: 10.1016/j.electacta.2009.05.011

Google Scholar

[8] Hamdan K.Z,A.S.A Khiar. (2014). Conductivity and Dielectric Studies of Methylcellulose/ Chitosan-NHH4CF3SO3 Polymer Electrolyte. Key Engineering Materials, 594-595: 818-822.

DOI: 10.4028/www.scientific.net/kem.594-595.818

Google Scholar

[9] Hafiza M N, M I N Isa. (2014). Ionic Conductivity and Conduction Mechanism Studies of CMC/Chitosan Biopolymer Blend Electrolytes. Research Journal of Recent Science. 3(11):50-56.

Google Scholar

[10] El-Hefian E, Yahaya A H (2010). Effects of Temperature, Shearing Time and Rate of Shear on the Viscosity of Chitosan/Agar Blend Solutions. Maejo International Journal of Science and Technology. 4(2). 261-267.

Google Scholar

[11] Misenan M. S. M., A. H. Shaffie, A. S. A. Khiar. (2018). Effect of BMITFSI to the Electrical Properties of Chitosan/ MethylCellulose Based Polymer Electrolyte. AIP Conference Proceedings 1972. 030001:.

DOI: 10.1063/1.5041222

Google Scholar

[12] Misenan M. S. M., M. I. N. Isa, A. S. A. Khiar (2018). Electrical and structural studies of polymer electrolyte based on chitosan/methyl cellulose blend doped with BMIMTFSI. Material Research Express. 5 (5). https://doi.org/10.1088/2053-1591/aac25b.

DOI: 10.1088/2053-1591/aac25b

Google Scholar

[13] Misenan M. S. M., E.S. Ali, A. S. A. Khiar. (2018). Conductivity, dielectric and modulus study of chitosan-methyl cellulose – BMIMTFSI polymer electrolyte doped with cellulose nano crystal. AIP Conference Proceedings 1972. 030001:.

DOI: 10.1063/1.5041231

Google Scholar

[14] Sim, L.N., S. R. Majid, A. K. Arof (2014). Effects of 1–butyl–3–methyl imidazolium trifluoromethanesulfonate ionic liquid in poly(ethyl methacrylate)/poly(vinylidenefluoride–co– hexafluoropropylene) blend based polymer electrolyte system Electrochimica Acta 123.190–197.

DOI: 10.1016/j.electacta.2014.01.017

Google Scholar

[15] Arellano et al., (2016). Computational insights into the molecular interaction and ion-pair structures of a novel zinc-functionalized ionic liquid, [Emim][Zn(TFSI)3]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 153:6-15.

DOI: 10.1016/j.saa.2015.07.102

Google Scholar

[16] Samsudin, A.S., Aziz, M.I.A., M. I. N Isa (2012). Natural Polymer Electrolyte System Based on Sago: Structural and Transport Behaviour Characteristics International Journal of Polymer Analysis and Characterization.8.600-607.

DOI: 10.1080/1023666x.2013.723846

Google Scholar

[17] Ramlli M. A. & M. I. N. Isa (2016). Structural and Ionic Transport Properties of Protonic Conducting Solid Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped Ammonium Fluoride. Journal of Physical Chemistry B.

DOI: 10.1021/acs.jpcb.6b06068

Google Scholar