Scan Rates and the Disparities in the Electrochemical Double Layer Capacitor (EDLC) Performance

Article Preview

Abstract:

Three electrochemical double layer capacitor (EDLC) cells (Cell X, Y and Z) made from an electrode of 90 wt. % of the multiwalled commercial carbon nanotubes, 10 wt. % of poly (vinylidene fluoride-co-hexafluoropropylene) and three different samples of electrolytes polymer electrolyte made up of a compositions of 50:50, 60:40 and 70:30 wt.% of H3PO4/PVA (in ratio) soaked in a filter paper was characterized in this study. The aim is to ascertain the disparities in performances of the cells in relation to their respective scan rates. Cyclic voltammetry (CV) measurement of cells shows a high specific capacitance of 313 Fg−1 for the scan rates 10 mV was recorded from the cell with the highest composition H3PO4/PVA ratio (i.e. 70:30 wt.%). However, when the CV of the cell was measured with different scan rates, disparities in the performance occurred, as only 94 and 174 Fg−1 was recorded at the scan rates 100 and 50 mV respectively for cell-X. The result was not different when the two other cells (60:40 and 70:30 wt. % of H3PO4/PVA) were measured at the same scan rates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

125-130

Citation:

Online since:

July 2020

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Li, W. Bingqing, Supercapacitors Based on Nanostructured Carbon, Nano Energy. 2(2) (2013) 159-173.

Google Scholar

[2] M.Y. Ayad, M. Becherif, A. Henni, Vehicle Hybridization with Fuel Cell, Supercapacitors and Batteries by Sliding Mode Control. Renewable Energy, 36, (2011) 2627-2634.

DOI: 10.1016/j.renene.2010.06.012

Google Scholar

[3] G.A. Snook, P. Kao, S. Adam, Best, Conducting-Polymer-Based Supercapacitor Devices and Electrodes. Journal of Power Sources, 196, (2011) 1-12.

DOI: 10.1016/j.jpowsour.2010.06.084

Google Scholar

[4] M. Domingo-García, J.A. Fernandez, M.C. Almazán-Almazána, F.J. López-Garzóna, F. Stoecklic, T.A. Centenob, Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors. Journal of Power Sources, 195, (2010) 3810–3813.

DOI: 10.1016/j.jpowsour.2009.12.090

Google Scholar

[5] H.J. Choi, S.M. Jung, J. M. Seo, D.W. Chang, L. Dai, B. Jong-Beom, Graphene for Energy Conversion and Storage in Fuel Cells and Supercapacitors. Nano Energy, 1, (2012) 534-551.

DOI: 10.1016/j.nanoen.2012.05.001

Google Scholar

[6] C. Zheng, W. Qian, C. Cui, Q. Zhang, Y. Jin,, M. Zhao, P. Tan, F. Wei, Hierarchical Carbon Nanotube Membrane with High Packing Density and Tunable Porous Structure for High Voltage Supercapacitors. Carbon, 50, (2012) 5167-5175.

DOI: 10.1016/j.carbon.2012.06.058

Google Scholar

[7] D.P. Dubal, H. Rudolf, Self-Assembly of Stacked Layers of Mn3O4 Nanosheets Using a Scalable Chemical Strategy for Enhanced, Flexible, Electrochemical Energy Storage, Journal of Power Sources, 238 (2013) 274-282.

DOI: 10.1016/j.jpowsour.2013.01.198

Google Scholar

[8] D.P. Dubal, G.S. Gund, H.R., Lokhande, C.D., Jadhav, P. Chan-Jin, Solution-Based Binder-Free Synthetic Approach of RuO2 Thin Films for All Solid State Supercapacitors, Electrochimica Acta, 103 (2013) 103-109.

DOI: 10.1016/j.electacta.2013.04.055

Google Scholar

[9] L. S. Aravinda, K. U. Bhat, B. R. Bhat, Nano CeO2/activated Carbon Based Composite Electrodes for High Performance Supercapacitor, Materials Letters, 112, (2013) 158-161.

DOI: 10.1016/j.matlet.2013.09.009

Google Scholar

[10] L.S. Aravinda, U. Bhat, B.R. Bhat, Binder Free MoO3/Multiwalled Carbon Nanotube Thin Film Electrode for High Energy Density Supercapacitors. Electrochimica Acta, 112, (2013) 663-669.

DOI: 10.1016/j.electacta.2013.08.114

Google Scholar

[11] M. A. Hashim, L. Sa'adu, Design, Fabrication and Characterization of a Commercially Prepared Carboxyl Multiwalled Carbon Nanotubes with a Hybrid Polymer Electrolytes. Applied Physics Research; Vol. 6, No. 4; (2012) 106-118.

DOI: 10.5539/apr.v6n4p106

Google Scholar

[12] H. B. Gu, J.-U. Kim, H.-W. Song, G.-C. Park, B.-K. Park, Electrochemical Properties of Carbon Composite Electrode with Polymer Electrolyte for Electric Double-Layer Capacitor. Electrochimica Acta, 45, (2000) 1533-1536.

DOI: 10.1016/s0013-4686(99)00370-9

Google Scholar

[13] K.V. Kumar, G. Suneeta Sundar, Conductivity Studies of (PEO +KHCO3) Solid Electrolyte System and its Application as an Electrochemical Cell. Journal of Engineering Science and Technology, 5, (2010) 130-139.

Google Scholar

[14] Y.-J. Zhang, Y.-D. Huang, W. Lei, Study of EVOH Based Single Ion Polymer Electrolyte: Composition and Microstructure Effects on the Proton Conductivity. Solid State Ionics, 177, (2006) 65-71.

DOI: 10.1016/j.ssi.2005.10.008

Google Scholar

[15] C. C. Yang, Chemical Composition and XRD Analyses for Alkaline Composite PVA Polymer Electrolyte. Materials Letters, 58, (2004) 33-38.

DOI: 10.1016/s0167-577x(03)00409-9

Google Scholar

[16] K. Ragavendran, P. Kalyani, A. Veluchamy,, S. Banumathi,, R. Thirunakaran,, , T. J. Benedict, Characterization of Plasticized PEO Based Solid Polymer Electrolyte by XRD and AC Impedance Methods. Portugaliae Electrochimica Acta, 22, (2004) 149-159.

DOI: 10.4152/pea.200402149

Google Scholar

[17] S. K. Tripathi, A. Gupta, K. Manju, Studies on Electrical Conductivity and Dielectric Behaviour of PVdF-HFP-PMMA-NaI Polymer Blend Electrolyte. Bull. Mater. Sci., 35, (2012) 969-975.

DOI: 10.1007/s12034-012-0387-2

Google Scholar

[18] M. Ulaganathan, R. Nithya, S. Rajendran, Surface Analysis Studies on Polymer Electrolyte Membranes Using Scanning Electron Microscope and Atomic Force Microscope. Intech, 33, (2012) 671-694.

DOI: 10.5772/34948

Google Scholar

[19] C.-W., Kuo, C.-W. Huang, B.-K. Chen, W.-B. Li, P.-R. Chen, T.-H. Ho, C.-G. Tseng &, W. Tzi-Yi, Enhanced Ionic Conductivity in PAN-PEGME-LiClO4-PC Composite Polymer Electrolytes. Int. J. Electrochem. Sci., 8, (2013) 3834-3850.

Google Scholar

[20] R. Yang, S. Zhang, L. Zhang, L. Wenbo, Electrical Properties of Composite Polymer Electrolytes Based on PEO-SN-LiCF3SO3. Int. J. Electrochem. Sci., 8, (2013) 10163-10169.

Google Scholar

[21] L. Sa'adu, M.A. Hashim, B.B. Masbudi, Conductivity Studies and Characterizations of PVA-Orthophosphoric Electrolytes, Journal of Materials Science Research, 3(2014) 48-58.

Google Scholar

[22] L. Sa'adu, M.A. Hashim, B.B. Masbudi, A Noble Conductivity Studies and Characterizations of PVA-Orthophosphoric-Filter Paper Electrolytes, Journal of Materials Science Research, 3 (2014) 1-12.

DOI: 10.5539/jmsr.v3n4p1

Google Scholar

[23] Shu, D., Lv, C., Cheng, F., He, C., Yang, K., Nan, J., L Long., "Enhanced Capacitance and Rate Capability of Nanocrystalline VN as Electrode Materials for Supercapacitors, Int. J. Electrochem. Sci. 8 (2013) 1209 – 1225.

Google Scholar

[24] C. Tran, K. Vibha, Fabrication of Porous Carbon Nanofibers with Adjustable Pore Sizes as Electrodes for Supercapacitors, Journal of Power Sources, 235(2013) 289-296.

DOI: 10.1016/j.jpowsour.2013.01.080

Google Scholar

[25] H. Pan, J. Li, Y. P Feng, Carbon Nanotubes for Supercapacitor, Nanoscale Research Letters, 5 (2010) 654-668.

Google Scholar