Friction Stir Welding of the Carbon-Doped Dual-Phase High Entropy Alloy

Article Preview

Abstract:

Fe49Mn30Cr10Co10C1 high entropy alloy (HEA) is produced by induction melting. The as-cast alloy is cold rolled and annealed at 900°C, to produce fine recrystallized structure before friction stir welding (FSW). The structure of the annealed alloy consists of a recrystallized face-centered cubic (fcc, γ) and hexagonal close-packed (hcp, ε) phases with volume fractions of 91% and 5%, respectively, as well as M23C6 carbides with the volume fraction of 4%. Sound weld without visible defects, such as porosity or cracks, are obtained. Friction stir welding results in a decrease in the average grain size from 7.0 to 1.9 μm in the stir zone. The volume fraction of the M23C6 carbides decreases to 1% after FSW. The alloy shows high yield strength and ultimate tensile strength of 475 MPa and 865 MPa, respectively, together with elongation of 70%.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

364-368

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li, D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties, Jom. 69 (2017) 2099–2106.

DOI: 10.1007/s11837-017-2540-2

Google Scholar

[2] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature. 534 (2016) 227–230.

DOI: 10.1038/nature17981

Google Scholar

[3] Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity, Acta Mater. 136 (2017) 262–270.

DOI: 10.1016/j.actamat.2017.07.023

Google Scholar

[4] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater. 131 (2017) 323–335.

DOI: 10.1016/j.actamat.2017.03.069

Google Scholar

[5] Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep. 7 (2017) 40704.

DOI: 10.1038/srep40704

Google Scholar

[6] Z. Li, D. Raabe, Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy, Mater. Chem. Phys. 210 (2018) 29–36.

DOI: 10.1016/j.matchemphys.2017.04.050

Google Scholar

[7] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Reports. 50 (2005) 1–78.

Google Scholar

[8] M.W. Mishra Rajiv S., Mahoney, Friction stir welding and processing, Mater. Sci. Eng. R Reports. 50 (2007) 360.

Google Scholar

[9] D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, S. Zherebtsov, Friction stir welding of a сarbon-doped CoCrFeNiMn high-entropy alloy, Mater. Charact. 145 (2018) 353–361.

DOI: 10.1016/j.matchar.2018.08.063

Google Scholar

[10] M.-G. Jo, H.-J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.-Y. Suh, D.-I. Kim, S.-T. Hong, H.N. Han, Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi, Met. Mater. Int. 24 (2018) 73–83.

DOI: 10.1007/s12540-017-7248-x

Google Scholar

[11] Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, J. Wei, Friction-stir welding of a ductile high entropy alloy: microstructural evolution and weld strength, Mater. Sci. Eng. A. 711 (2018) 524–532.

DOI: 10.1016/j.msea.2017.11.058

Google Scholar

[12] J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, Z.P. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics. 55 (2014) 9–14.

DOI: 10.1016/j.intermet.2014.06.015

Google Scholar

[13] K.H. Song, H. Fujii, K. Nakata, Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600, Mater. Des. 30 (2009) 3972–3978.

DOI: 10.1016/j.matdes.2009.05.033

Google Scholar

[14] K. Gangwar, M. Ramulu, Friction stir welding of titanium alloys: A review, Mater. Des. 141 (2018) 230–255.

DOI: 10.1016/j.matdes.2017.12.033

Google Scholar