[1]
K. Li, Ni Q., Zhu W., Zheng M., J. M., Y. Li. Iron extraction from oolitic iron ore by a deep reduction process. Journal of iron and steel research international. 18(8) (2011) 9-13.
DOI: 10.1016/s1006-706x(11)60096-4
Google Scholar
[2]
Y. Kapelyushin, X. Xing, J. Zhang, S. Jeong, Y. Sasaki, O. Ostrovski. Effect of alumina on the gaseous reduction of magnetite in CO/CO 2 gas mixtures. Metallurgical and Materials Transactions B. 46(3) (2015) 1175-1185.
DOI: 10.1007/s11663-015-0316-z
Google Scholar
[3]
Y. Kapelyushin, Y. Sasaki, J. Zhang, S. Jeong, O. Ostrovski. In-Situ study of gaseous reduction of magnetite doped with alumina using high-temperature XRD analysis. Metallurgical and Materials Transactions B. 46(6) (2015) 2564-2572.
DOI: 10.1007/s11663-015-0437-4
Google Scholar
[4]
S. Cullough, N. A. Barcza, S. Hockaday, C. Johnson. Pre-reduction and smelting characteristics of Kazakhstan ore samples. The Twelfth international Ferro-Alloys Congress Substainable Future. Helsinki, Finland. (2010) 249-262.
Google Scholar
[5]
N. M. Anacleto, I. Solheim, B. Sorensen, E. Ringdalen, O. Ostrovski. Reduction of chromium oxide and ore by methane-containing gas mixtures. Authors' Revised Draft Infacon XV: International Ferro-Alloys Congress, Southern African Institute of Mining and Metallurgy, Cape Town. (2018) 71-78.
Google Scholar
[6]
M. Leikola, P. Taskinen, R. H. Eric. Reduction of Kemi chromite with methane. Journal of the Southern African Institute of Mining and Metallurgy. 118(6) (2018) 575-580.
DOI: 10.17159/2411-9717/2018/v118n6a3
Google Scholar
[7]
S. Sokhanvaran, D. Paktunc, A. Barnes. NaOH-assisted direct reduction of Ring of Fire chromite ores, and the associated implications for processing. Journal of the Southern African Institute of Mining and Metallurgy. 118(6) (2018) 581-588.
DOI: 10.17159/2411-9717/2018/v118n6a4
Google Scholar
[8]
A. Bhalla, R. H. Eric. Mechanism and kinetic modelling of methane-based reduction of Mamatwan manganese ore. Authors' Revised Draft Infacon XV: International Ferro-Alloys Congress, Southern African Institute of Mining and Metallurgy, Cape Town. (2018) 143-156.
Google Scholar
[9]
A. Cheraghi, H. Yoozbashizadeh, J. Safarian. Chemical, microstructural, and phase changes of manganese ores in calcination and pre-reduction by natural gas. Authors' Revised Draft Infacon XV: International Ferro-Alloys Congress, Southern African Institute of Mining and Metallurgy, Cape Town. (2018) 157-167.
Google Scholar
[10]
R. Huang, X.W. Lv, C.G. Bai, Q.Y. Deng, S.W. Ma. Solid state and smelting reduction of Panzhihua ilmenite concentrate with coke. Canadian Metallurgical Quarterly. 51(4) (2012) 434-439.
DOI: 10.1179/1879139512y.0000000008
Google Scholar
[11]
H.P. Gou, G.H. Zhang, X.J. Hu, K.C. Chou. Kinetic study on carbothermic reduction of ilmenite with activated carbon. Transactions of Nonferrous Metals Society of China. 27(8) (2017) 1856-1861.
DOI: 10.1016/s1003-6326(17)60209-7
Google Scholar
[12]
K. I. Smirnov. Involvement of high-titanium titanomagnetites in non-waste pyrometallurgical processing. Problems of geology and subsoil development: Proceedings of the International Symposium XXI Academician MA Usov students and young scientists, dedicated to the 130th birthday of Professor MI Kuchin, Tomsk, 3-7 april 2017 y. Vol 2.—Tomsk, 2017. 2 (2017) 415-417.
Google Scholar
[13]
V.E. Roshchin, A.V. Asanov, A.V. Roshchin. Possibilities of two-stage processing oftitanomagnetite ore concentrates. Russian metallurgy (Metally). 6 (2011) 499-508.
DOI: 10.1134/s0036029511060206
Google Scholar
[14]
V.E. Roshchin, A.V. Asanov, A.V. Roshchin. Solid-phase prereduction of iron-vanadium concentrates and liquid-phase separation of the products of their reduction. Russian metallurgy (Metally). 11 (2010) 1001-1008.
DOI: 10.1134/s0036029510110029
Google Scholar
[15]
L.I. Leontev, N.A. Vatolin, S.V. Shavrin, N.S. Shumakov. Pyrometallurgical processing of complex ores. Moscow. Metallurgy. 1997. (In Russ.).
Google Scholar
[16]
N.V. Gudima, Ja. P. Shejn. A quick reference to the metallurgy of non-ferrous metals. Metallurgy. (1975) 536.
Google Scholar
[17]
N. I. Utkin. Non-ferrous metal production. Intermet Inzhiniring. (2004) 442.
Google Scholar
[18]
N.V. Panishev, V.F. Rashnikov, B.A. Dubrovsky, E.V. Redin. Metallization of feldspar iron ore and titanomagnetites of the Chelyabinsk region. Proceedings of the Eighth International Industrial Forum Reconstruction of Industrial Enterprises - Breakthrough Technologies in Metallurgy and Mechanical Engineering,. (2016) 48-49.
Google Scholar
[19]
M. A. Pourabdoli, D. I. H., S. Raygan, H. Abdizadeh, K. Hanaei. Production of high titania slag by Electro-Slag Crucible Melting (ESCM) process. International Journal of Mineral Processing. 78(3) (2006) 175-181.
DOI: 10.1016/j.minpro.2005.10.005
Google Scholar
[20]
V.E. Roshchin, A.V. Roshchin, P.A. Gamov, A.S. Bilgenov. Electric and mass transfer during the reduction of metals with solid carbon in solid complex oxides. Metals. 1 (2020) 59–71.
DOI: 10.1134/s0036029520010103
Google Scholar
[21]
V.E. Roshchin, A.V. Roshchin. Electron mechanism of reduction processes in blast and ferroalloy furnaces. CIS Iron and Steel Review. 17 (2019) 14–24.
DOI: 10.17580/cisisr.2019.01.03
Google Scholar