[1]
S. I. Platov, K. B. Maslennikov, M. L. Lobanov, Influence of parameters of thermomechanical processing on the microstructure of thick-sheet pipe rolling, Conference proceedings of the international Symposium Perspective materials and technologies,, Brest, 2019, pp.516-517. (In Russian).
Google Scholar
[2]
M. L. Lobanov, M. L. Krasnov, Burtsev V. N., Danilov S. V., Pastukhov V. I. Influence of the cooling rate on the structure of low-carbon low-alloy steel after controlled thermomechanical processing., MITOM ,1. 2019, pp.31-37. (In Russian).
DOI: 10.1007/s11041-019-00373-7
Google Scholar
[3]
N. S. Duminova, V. L. Kornilov, V. N. Urtsev, S. N. Voronkov, N. S. Sidorenko, Certification by non-destructive methods of the control of sheet metal produced at the mill 5000 of PJSC MMK, Metallurgist, 12, 2018, pp.24-27.
DOI: 10.1007/s11015-019-00777-z
Google Scholar
[4]
V. L. Kornilov, I. Yu. Nadezhina, L. S. Ivanova, Development of non-destructive methods of control of mechanical properties of rolled metal in MMK, Steel, 2, 2012, pp.125-127. (In Russian).
Google Scholar
[5]
V.A. Nekit, S.I. Platov, M.L. Krasnov, V.N. Urtsev, M.V. Ivanushkin, Study of the microstructure of the pipe steel after rolling in the plate mill 5000, IOP Conference Series: Materials Science and Engineering 447(1), 2018, 012063.
DOI: 10.1088/1757-899x/447/1/012063
Google Scholar
[6]
V.A. Nekit, S.I. Platov, M.L. Krasnov, The nature of the change of the surface temperature of the work piece during hot rolling of pipe steel, MATEC Web of Conferences 224, 2018, 01105.
DOI: 10.1051/matecconf/201822401104
Google Scholar
[7]
N.N. Ogarkov, S.I. Platov, E.S. Shemetova, D.V. Terent'ev, V.A. Nekit, M.N. Samodurova, Oil Absorption Capacity of the Contact Surfaces in Metal-Forming Processes, Metallurgist 61(1-2), 2017, pp.58-62.
DOI: 10.1007/s11015-017-0454-4
Google Scholar
[8]
V.A. Nekit,, S.I. Platov, M.L. Krasnov, V.N. Urtsev, M.V. Ivanushkin, V.S. Slavin, K.B. Maslennikov, Changing the properties of pipe steel depending on the rolling conditions on a thick-sheet mill. Steel. № 4. 2019, pp.36-38. (In Russian).
DOI: 10.1088/1757-899x/447/1/012063
Google Scholar
[9]
S.I. Platov, V.A. Nekit, N.N. Ogarkov, Improving the controlled cooling after wire rod rolling in the finishing block of stands, Materials Science Forum 870, 2016, pp.620-624.
DOI: 10.4028/www.scientific.net/msf.870.620
Google Scholar
[10]
V.A. Nekit, A.A. Pustovalov, A.V. Nekit, The method of finding critical deformations for uniaxial tension, Kuznechno-Shtampovochnoe Proizvodstvo (Obrabotka Metallov Davleniem) (3), 2003, pp.29-30.
Google Scholar
[11]
Yao, S., Ceccarelli, M., Carbone, G. et al. Force Analysis and Curve Design for Laying Pipe in Loop Laying Head of Wire Rod Mills. Chin. J. Mech. Eng. 32, (2019).
DOI: 10.1186/s10033-019-0344-8
Google Scholar
[12]
C.Capdevila, F.G. Caballero, C.Garcia de Andres, Modelling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel, Metallurgical and Materials Transactions A, V. 32, 2001, p.661–669.
DOI: 10.1007/s11661-001-1001-1
Google Scholar
[13]
R.C. Rees, H.K.D.H. Bhadeshia, Bainite transformation kinetics Part 1 Modified model, Materials Science and Technology, V. 8, 1992, p.985 – 993.
DOI: 10.1179/mst.1992.8.11.985
Google Scholar
[14]
M.J. Santofimia, F.G. Caballero, C. Capdevila, C.G. Matteo, C.G. de Andres, New Model for the Overall Transformation Kinetics of Bainite. Part 1: The Model, Materials Transactions, V.47, 2006, p.2465–2472.
DOI: 10.2320/matertrans.47.2465
Google Scholar
[15]
H. Matsuda, H.K.D.H. Bhadeshia, Kinetics of the bainite transformation , Proceedings Of The Royal. Society A, London, V. 460, 2004, P. 1707–1722.
DOI: 10.1098/rspa.2003.1225
Google Scholar
[16]
С. Tszeng, Autocatalysis In Bainite Transformations, C. Tszeng // Materials Science And Engineering A, 2000, V. 293, P. 185–190.
DOI: 10.1016/s0921-5093(00)01221-1
Google Scholar
[17]
H.K.D.H. Bhadeshia, Bainite in steels: transformation, microstructure and properties / London, UK, The Institute of Materials, 2001, P. 1–454.
Google Scholar
[18]
C. A Liu, Bainite transformation kinetics model and its application to X70 pipeline steel, C.Liu, X.Di, C.Chen, X.Guo, Z.Xue, Journal of Materials Science. - 2015. №50. - p.5079–5090.
DOI: 10.1007/s10853-015-9060-7
Google Scholar
[19]
D.P. Koistinen, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Marburger, Acta Metallurgica, V. 7, 1959, p.59–60.
DOI: 10.1016/0001-6160(59)90170-1
Google Scholar
[20]
B. Skrotzki, The course of the volume fraction of martensite vs. temperature function Mx(t) , Journal de physique IV, Colloque C4, V.1, 1991, pp.4-36.
DOI: 10.1051/jp4:1991455
Google Scholar
[21]
F. Huyan, Modelling of the fraction of martensite in low-alloy steels, F. Huyan, P. Hedstrom, A. Borgenstam, Materials Today, Proceeding, V.2, 2015, p.561–564.
DOI: 10.1016/j.matpr.2015.07.347
Google Scholar
[22]
I. A. Artemiev, M. L. Krasnov, G. M. Rusakov, S. V. Danilov, Determination of thermal effects of diffusionless phase transformations in low-carbon low-alloy steels at high cooling rates , Diagnostics, Resource and Mechanics of materials and structures, Iss. 6, 2018, p.173–183.
DOI: 10.17804/2410-9908.2018.6.173-183
Google Scholar