Experience of Using Complex Modifiers to Increase Corrosion Resistance of Pipe Steels

Article Preview

Abstract:

The article presents the test results of complex microcrystalline modifiers containing calcium, barium, strontium, rare earth metals. Complex modifiers were used in the processing of steel for 17G1S-U pipes in order to reduce its contamination with non-metallic inclusions, including corrosive ones. The use of modifiers allowed to reduce metal contamination by non-metallic inclusions of all kinds. The most experimental non-metallic inclusions were obtained during metal processing with INSTEEL®5.1 and INSTEEL®9.4 modifiers. In addition, the use of experienced modifiers ensured the production of complex oxysulfides of calcium, cerium and lanthanum with low oxygen content and thermal expansion coefficients, which increases the corrosion resistance of steel.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

369-374

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.G. Rodionova. O.N. Baklanova. A.V. Amezhnov et al. Vliyanie nemetallicheskih vklyuchenij na korrozionnuyu stojkost' uglerodistyh i nizkolegirovannyh stalej dlya neftepromyslovyh truboprovodov [The effect of non-metallic inclusions on the corrosion resistance of carbon and low alloy steels for oil field pipelines]. Stal' [Steel]. 10 (2017) 41-48.

Google Scholar

[2] G.A. Filippov. I.G. Rodionova. O.N. Baklanov et al. Korrozionnaya stojkost' stal'nyh truboprovodov [The corrosion resistance of the steel pipes]. Tekhnologiya metallov [Metal technology]. 2 (2004) 24-27.

Google Scholar

[3] I.I. Reformatskaya. I.G. Rodionova. Yu.A. Beilin. L.A. Nisel'son. A.N. Podobaev. The Effect of Nonmetal Inclusions and Microstructure on Local Corrosion of Carbon and Low-alloyed Steels. Protection of Metals. 40(5) (2004) 447-452.

DOI: 10.1023/b:prom.0000043062.19272.c5

Google Scholar

[4] A.Y. Badmos. H.A. Ajimotokan. E.O. Emmanuel. Corrosion Petroleum Pipelines. N. Y. Sci. J. 2(5) (2009) 36-40.

Google Scholar

[5] S. Kadry. Corrosion Analysis of Stainless Steel. Eur. J. Sci. Res. 22(4) (2008) 508-516.

Google Scholar

[6] Z.Y. Liu. X.G. Li. Y.F. Cheng. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution. Electrochim. Acta. 56(11) (2011) 4167-4175.

DOI: 10.1016/j.electacta.2011.01.100

Google Scholar

[7] S. Zheng. C. Li. Y. Qi. L. Chen. C. Chen. Mechanism of (Mg. Al. Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion. Corros. Sci.. 67 (2013) 20-31.

DOI: 10.1016/j.corsci.2012.09.044

Google Scholar

[8] Il. Park. S.M. Lee. M. Kang. S. Lee. Y.K. Lee. Pitting corrosion behavior in advanced high strength steels. J. Alloy. Compd. 619 (2015) 205-210.

DOI: 10.1016/j.jallcom.2014.08.243

Google Scholar

[9] J.H. Park. Y. Kang. Inclusions in Stainless Steels − A Review. Steel Res. Int. 88(12) (2017) 1700130.

DOI: 10.1002/srin.201700130

Google Scholar

[10] L. Wang. J. Xin. L. Cheng. K. Zhao. B. Sun. J. Li. X. Wang. Z. Cui. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment. Corros. Sci. 147 (2019) 108-127.

DOI: 10.1016/j.corsci.2018.11.007

Google Scholar

[11] A.N. Shapovalov. E.A. Shevchenko. S.N. Baskov. Improvement of the technology of preliminary deoxidation of steel in the conditions of JSC Ural steel. Chernye Metally 8 (2019) 10-16.

Google Scholar

[12] K.V. Grigorovich. K.Y. Demin. A.M. Arsenkin et al. Prospects of the application of barium-bearing master alloys for the deoxidation and modification of a railroad metal. Russ. Metall. 2011(9) (2011) 912-920.

DOI: 10.1134/s0036029511090126

Google Scholar

[13] L.A. Smirnov. V.A. Rovnushkin. A.S. Oryshchenko et al. Modification of Steel and Alloys with Rare-Earth Elements. Part 1. Metallurgist. 59(11-12) (2016) 1053-1061.

DOI: 10.1007/s11015-016-0214-x

Google Scholar

[14] Y.‐Q. Liu. L.‐J. Wang and K.C. Chou. Effects of Cerium on Resistance to Pitting Corrosion of Spring Steel Used in Fasteners of High‐Speed Railway. Steel Res. Int. 85(11) (2014) 1510-1516.

DOI: 10.1002/srin.201300438

Google Scholar

[15] G.‐J. Cai and C.‐S. Li. Effects of Ce on inclusions and corrosion resistance of low‐nickel austenite stainless steel. Mater. and Corros. 66(12) (2015) 1445-1455.

DOI: 10.1002/maco.201508380

Google Scholar

[16] V. Gollapalli. B. Venkat. Ph. S. Karamched. Ch. R. Borra. G. G. Roy. P. Srirangam. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels. Ironmak. Steelmak. 46(7) (2019) 663-670.

DOI: 10.1080/03019233.2018.1443382

Google Scholar

[17] J. Lu. G. Cheng. L. Chen et al. Distribution and Morphology of MnS Inclusions in Resulfurized Non-Quenched and Tempered Steel with Zr Addition. ISIJ Int. 58(7) (2018) 1307.

DOI: 10.2355/isijinternational.isijint-2018-081

Google Scholar

[18] X.B. Li. Y. Min. C.J. Liu et al. Influence of zirconium on mechanical properties and phase transformation in low carbon steel. Materials Science and Technology. 32(5) (2016) 454.

DOI: 10.1179/1743284715y.0000000110

Google Scholar

[19] J. Gao. P. Fu. H. Liu. D. Li. Effects of Rare Earth on the Microstructure and Impact Toughness of H13 Steel. Metals. 5 (2015) 383-394.

DOI: 10.3390/met5010383

Google Scholar

[20] D. Boldyrev. A. Shapovalov. S. Nefedyev et al. The electron-microscopic and x-ray spectral analysis of phase composition of CGI inoculant structure. J. Chem. Technol. Met. 54(2) (2019) 348-361.

Google Scholar

[21] E.A. Shevchenko. A.N. Shapovalov. E.V. Bratkovskiy. Increase of lining resistance of electric arc furnaces by improving the slag procedure with use of magnesium-containing materials. Chernye Metally. 9 (2018) 20-21.

Google Scholar

[22] I.V. Bakin. G.G. Mikhailov. V.A. Golubtsov. Methods for improving the efficiency of steel modifying. Materials Science Forum. 946 (2019) 215-222.

DOI: 10.4028/www.scientific.net/msf.946.215

Google Scholar

[23] I.V. Bakin. N.A. Shaburova. I.V. Ryabchikov et al. Experimental Study of Refining and Modification of Steel with Si–Ca. Si–Sr. and Si–Ba Alloys. Steel in Translation. 49(8) (2019) 543-547.

DOI: 10.3103/s0967091219080023

Google Scholar