[1]
I.G. Rodionova. O.N. Baklanova. A.V. Amezhnov et al. Vliyanie nemetallicheskih vklyuchenij na korrozionnuyu stojkost' uglerodistyh i nizkolegirovannyh stalej dlya neftepromyslovyh truboprovodov [The effect of non-metallic inclusions on the corrosion resistance of carbon and low alloy steels for oil field pipelines]. Stal' [Steel]. 10 (2017) 41-48.
Google Scholar
[2]
G.A. Filippov. I.G. Rodionova. O.N. Baklanov et al. Korrozionnaya stojkost' stal'nyh truboprovodov [The corrosion resistance of the steel pipes]. Tekhnologiya metallov [Metal technology]. 2 (2004) 24-27.
Google Scholar
[3]
I.I. Reformatskaya. I.G. Rodionova. Yu.A. Beilin. L.A. Nisel'son. A.N. Podobaev. The Effect of Nonmetal Inclusions and Microstructure on Local Corrosion of Carbon and Low-alloyed Steels. Protection of Metals. 40(5) (2004) 447-452.
DOI: 10.1023/b:prom.0000043062.19272.c5
Google Scholar
[4]
A.Y. Badmos. H.A. Ajimotokan. E.O. Emmanuel. Corrosion Petroleum Pipelines. N. Y. Sci. J. 2(5) (2009) 36-40.
Google Scholar
[5]
S. Kadry. Corrosion Analysis of Stainless Steel. Eur. J. Sci. Res. 22(4) (2008) 508-516.
Google Scholar
[6]
Z.Y. Liu. X.G. Li. Y.F. Cheng. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution. Electrochim. Acta. 56(11) (2011) 4167-4175.
DOI: 10.1016/j.electacta.2011.01.100
Google Scholar
[7]
S. Zheng. C. Li. Y. Qi. L. Chen. C. Chen. Mechanism of (Mg. Al. Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion. Corros. Sci.. 67 (2013) 20-31.
DOI: 10.1016/j.corsci.2012.09.044
Google Scholar
[8]
Il. Park. S.M. Lee. M. Kang. S. Lee. Y.K. Lee. Pitting corrosion behavior in advanced high strength steels. J. Alloy. Compd. 619 (2015) 205-210.
DOI: 10.1016/j.jallcom.2014.08.243
Google Scholar
[9]
J.H. Park. Y. Kang. Inclusions in Stainless Steels − A Review. Steel Res. Int. 88(12) (2017) 1700130.
DOI: 10.1002/srin.201700130
Google Scholar
[10]
L. Wang. J. Xin. L. Cheng. K. Zhao. B. Sun. J. Li. X. Wang. Z. Cui. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment. Corros. Sci. 147 (2019) 108-127.
DOI: 10.1016/j.corsci.2018.11.007
Google Scholar
[11]
A.N. Shapovalov. E.A. Shevchenko. S.N. Baskov. Improvement of the technology of preliminary deoxidation of steel in the conditions of JSC Ural steel. Chernye Metally 8 (2019) 10-16.
Google Scholar
[12]
K.V. Grigorovich. K.Y. Demin. A.M. Arsenkin et al. Prospects of the application of barium-bearing master alloys for the deoxidation and modification of a railroad metal. Russ. Metall. 2011(9) (2011) 912-920.
DOI: 10.1134/s0036029511090126
Google Scholar
[13]
L.A. Smirnov. V.A. Rovnushkin. A.S. Oryshchenko et al. Modification of Steel and Alloys with Rare-Earth Elements. Part 1. Metallurgist. 59(11-12) (2016) 1053-1061.
DOI: 10.1007/s11015-016-0214-x
Google Scholar
[14]
Y.‐Q. Liu. L.‐J. Wang and K.C. Chou. Effects of Cerium on Resistance to Pitting Corrosion of Spring Steel Used in Fasteners of High‐Speed Railway. Steel Res. Int. 85(11) (2014) 1510-1516.
DOI: 10.1002/srin.201300438
Google Scholar
[15]
G.‐J. Cai and C.‐S. Li. Effects of Ce on inclusions and corrosion resistance of low‐nickel austenite stainless steel. Mater. and Corros. 66(12) (2015) 1445-1455.
DOI: 10.1002/maco.201508380
Google Scholar
[16]
V. Gollapalli. B. Venkat. Ph. S. Karamched. Ch. R. Borra. G. G. Roy. P. Srirangam. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels. Ironmak. Steelmak. 46(7) (2019) 663-670.
DOI: 10.1080/03019233.2018.1443382
Google Scholar
[17]
J. Lu. G. Cheng. L. Chen et al. Distribution and Morphology of MnS Inclusions in Resulfurized Non-Quenched and Tempered Steel with Zr Addition. ISIJ Int. 58(7) (2018) 1307.
DOI: 10.2355/isijinternational.isijint-2018-081
Google Scholar
[18]
X.B. Li. Y. Min. C.J. Liu et al. Influence of zirconium on mechanical properties and phase transformation in low carbon steel. Materials Science and Technology. 32(5) (2016) 454.
DOI: 10.1179/1743284715y.0000000110
Google Scholar
[19]
J. Gao. P. Fu. H. Liu. D. Li. Effects of Rare Earth on the Microstructure and Impact Toughness of H13 Steel. Metals. 5 (2015) 383-394.
DOI: 10.3390/met5010383
Google Scholar
[20]
D. Boldyrev. A. Shapovalov. S. Nefedyev et al. The electron-microscopic and x-ray spectral analysis of phase composition of CGI inoculant structure. J. Chem. Technol. Met. 54(2) (2019) 348-361.
Google Scholar
[21]
E.A. Shevchenko. A.N. Shapovalov. E.V. Bratkovskiy. Increase of lining resistance of electric arc furnaces by improving the slag procedure with use of magnesium-containing materials. Chernye Metally. 9 (2018) 20-21.
Google Scholar
[22]
I.V. Bakin. G.G. Mikhailov. V.A. Golubtsov. Methods for improving the efficiency of steel modifying. Materials Science Forum. 946 (2019) 215-222.
DOI: 10.4028/www.scientific.net/msf.946.215
Google Scholar
[23]
I.V. Bakin. N.A. Shaburova. I.V. Ryabchikov et al. Experimental Study of Refining and Modification of Steel with Si–Ca. Si–Sr. and Si–Ba Alloys. Steel in Translation. 49(8) (2019) 543-547.
DOI: 10.3103/s0967091219080023
Google Scholar