The Influence of the Working Conditions of the Electrospark Granules Deposition on the Formation of Cracks in Ti-Al Intermetallic Coatings

Article Preview

Abstract:

Electrospark treatment of a titanium alloy Ti6Al4V in a mixture of granules allows the formation of intermetallic Ti-Al coatings. The coating structure is penetrated by a network of cracks with a thickness of 0.46 to 1.19 microns and a specific area of 1.5 to 3.4%. A change in the ratio of Ti to Al in the mixture of granules does not lead to a monotonic change in the thickness and number of cracks. A decrease in the pulse duration from 200 to 20 μs leads to a slight decrease in the thickness of cracks and significantly increases their total area from 2.1 to 3.4%. An increase in the discharge pulse repetition rate can significantly increase the thickness of cracks in Ti-Al electrospark coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

814-820

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. García-Martínez, V. Miguel, A. Martínez-Martínez, M.C. Manjabacas, J. Coello, Sustainable lubrication methods for the machining of titanium alloys: An overview, Materials. 12 (2019) art. no. 3852.

DOI: 10.3390/ma12233852

Google Scholar

[2] K. Shang, S. Zheng, S. Ren, J. Pu, D. He, S. Liu. Improving the tribological and corrosive properties of MoS2 based coatings by dual-doping and multilayer construction, Appl. Surf. Sci. 437 (2018) 233-244.

DOI: 10.1016/j.apsusc.2017.12.167

Google Scholar

[3] S. Zhu, J. Cheng, Z. Qiao, J. Yang, High temperature solid-lubricating materials: A review, Tribol. Int. 133 (2019) 206-223.

DOI: 10.1016/j.triboint.2018.12.037

Google Scholar

[4] C.C. Qu, J. Li, Y.F. Juan, J.Z. Shao, R. Song, L.L. Bai, J.L. Chen. Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings, Surf. Coat. Technol. 357 (2019) 811-821.

DOI: 10.1016/j.surfcoat.2018.10.100

Google Scholar

[5] H. Torres, Ripoll M. Rodríguez, B. Prakash. Self-lubricating laser claddings for friction control during press hardening of Al-Si-coated boron steel, J. Mater. Proces. Technol. 269 (2019) 79-90.

DOI: 10.1016/j.jmatprotec.2019.02.002

Google Scholar

[6] R. Yang, Z. Liu , Y. Wang , G. Yang , H. Li, Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding. AIP Advances. 3 (2013) 022106.

DOI: 10.1063/1.4790652

Google Scholar

[7] H. Hanjun, C. Zhen, L. Xingguang , F. Xingguo, Z. Yugang, Z. Kaifeng, Z. Hui, Effects of substrate roughness on the vacuum tribological properties of duplex PEO/bonded-MoS2 coatings on Ti6Al4V. Surf. Coat. Technol. 349 (2018) 593–601.

DOI: 10.1016/j.surfcoat.2018.06.045

Google Scholar

[8] Y.K. Qin, D.S. Xiong, J.L. Li, R. Tyagi, Compositions and tribological properties of PEO coatings on Ti6Al4V alloy, Surf. Eng. 33 (2017) 895-902.

DOI: 10.1179/1743294414y.0000000412

Google Scholar

[9] W. Deng, X. Zhao, Y. Ana, E. Hao, S. Lia, H. Zhou, J. Chen. Improvement of tribological properties of as-sprayed 8YSZ coatings by in-situ synthesis C/MoS2 composite lubricant, Tribol. Int. 128 (2018) 260-270.

DOI: 10.1016/j.triboint.2018.07.038

Google Scholar

[10] M.A. Arenas, J.I. Ahuir-Torres , I. García , H. Carvajal , J. Damborenea, Tribological behaviour of laser textured Ti6Al4V alloy coated with MoS2 and graphene, Tribol. Int. 128 (2018) 240-247.

DOI: 10.1016/j.triboint.2018.07.031

Google Scholar

[11] A.A. Burkov, S.A. Pyachin, V.O. Krutikova, Formation of intermetallic coatings by electrospark deposition from aluminum and titanium granules, Hardening Technologies and Coatings (in Russian). 178 (2019) 451-455.

DOI: 10.3103/s1068375515020131

Google Scholar

[12] A.D. Verkhoturov, L.M. Murzin, Mechanism of the electrical erosion of composite materials during electrospark alloying, Soviet Powder Metallurgy and Metal Ceramics. 12 (1973) 680–683.

DOI: 10.1007/bf00794396

Google Scholar

[13] H. Aghajani, E. Hadavand, N.-S. Peighambardoust, S. Khameneh-asl, Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel. Surfaces and Interfaces. 18 (2020) 100392.

DOI: 10.1016/j.surfin.2019.100392

Google Scholar

[14] R. Sitek, J. Kaminski, J. Borysiuk, H. Matysiak, K. Kubiak, K.J. Kurzydlowski. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method, Intermetallics. 36 (2013) 36-44.

DOI: 10.1016/j.intermet.2012.12.017

Google Scholar

[15] M. Gizynski, S. Miyazaki, J. Sienkiewicz, S. Kuroda, H. Araki, H. Murakami, Z. Pakiela, A. Yumoto, Formation and subsequent phase evolution of metastable Ti-Al alloy coatings by kinetic spraying of gas atomized powders, Surf. Coat. Technol. 315 (2017) 240-249.

DOI: 10.1016/j.surfcoat.2017.02.053

Google Scholar

[16] Q. Jia, D. Li, Z. Zhang, N. Zhang, W. Zhao, Comparison of oxidation resistance of Al–Ti and Al–Ni intermetallic formed in situ by thermal spraying, Mater. Res. 6 (2019) 096408.

DOI: 10.1088/2053-1591/ab2cfc

Google Scholar

[17] J. Zhang, L. Zhu, A. Sun, X. Gu, Influence of laser shock processing on properties of SiCp/Cu composite weld crack restored by electro-spark overlaying. Transactions of the China Welding Institution. 30(12) (2009) 17-20.

Google Scholar

[18] V.S. Chirkin, Thermophysical Properties of Materials for Nuclear Engineering. Atomizdat, Moscow, (1968).

Google Scholar

[19] D. Holec, N. Abdoshahi, S. Mayer, H. Clemens, Thermal Expansion and Other Thermodynamic Properties of α2-Ti3Al and γ-TiAl Intermetallic Phases from First Principles Methods, Materials (Basel). 12 (2019) 1292.

DOI: 10.3390/ma12081292

Google Scholar

[20] Z. Chen, Y. Zhou Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization, Surf. Coat. Technol. 201(3-4) (2006) 1503-1510.

DOI: 10.1016/j.surfcoat.2006.02.015

Google Scholar