[1]
E. García-Martínez, V. Miguel, A. Martínez-Martínez, M.C. Manjabacas, J. Coello, Sustainable lubrication methods for the machining of titanium alloys: An overview, Materials. 12 (2019) art. no. 3852.
DOI: 10.3390/ma12233852
Google Scholar
[2]
K. Shang, S. Zheng, S. Ren, J. Pu, D. He, S. Liu. Improving the tribological and corrosive properties of MoS2 based coatings by dual-doping and multilayer construction, Appl. Surf. Sci. 437 (2018) 233-244.
DOI: 10.1016/j.apsusc.2017.12.167
Google Scholar
[3]
S. Zhu, J. Cheng, Z. Qiao, J. Yang, High temperature solid-lubricating materials: A review, Tribol. Int. 133 (2019) 206-223.
DOI: 10.1016/j.triboint.2018.12.037
Google Scholar
[4]
C.C. Qu, J. Li, Y.F. Juan, J.Z. Shao, R. Song, L.L. Bai, J.L. Chen. Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings, Surf. Coat. Technol. 357 (2019) 811-821.
DOI: 10.1016/j.surfcoat.2018.10.100
Google Scholar
[5]
H. Torres, Ripoll M. Rodríguez, B. Prakash. Self-lubricating laser claddings for friction control during press hardening of Al-Si-coated boron steel, J. Mater. Proces. Technol. 269 (2019) 79-90.
DOI: 10.1016/j.jmatprotec.2019.02.002
Google Scholar
[6]
R. Yang, Z. Liu , Y. Wang , G. Yang , H. Li, Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding. AIP Advances. 3 (2013) 022106.
DOI: 10.1063/1.4790652
Google Scholar
[7]
H. Hanjun, C. Zhen, L. Xingguang , F. Xingguo, Z. Yugang, Z. Kaifeng, Z. Hui, Effects of substrate roughness on the vacuum tribological properties of duplex PEO/bonded-MoS2 coatings on Ti6Al4V. Surf. Coat. Technol. 349 (2018) 593–601.
DOI: 10.1016/j.surfcoat.2018.06.045
Google Scholar
[8]
Y.K. Qin, D.S. Xiong, J.L. Li, R. Tyagi, Compositions and tribological properties of PEO coatings on Ti6Al4V alloy, Surf. Eng. 33 (2017) 895-902.
DOI: 10.1179/1743294414y.0000000412
Google Scholar
[9]
W. Deng, X. Zhao, Y. Ana, E. Hao, S. Lia, H. Zhou, J. Chen. Improvement of tribological properties of as-sprayed 8YSZ coatings by in-situ synthesis C/MoS2 composite lubricant, Tribol. Int. 128 (2018) 260-270.
DOI: 10.1016/j.triboint.2018.07.038
Google Scholar
[10]
M.A. Arenas, J.I. Ahuir-Torres , I. García , H. Carvajal , J. Damborenea, Tribological behaviour of laser textured Ti6Al4V alloy coated with MoS2 and graphene, Tribol. Int. 128 (2018) 240-247.
DOI: 10.1016/j.triboint.2018.07.031
Google Scholar
[11]
A.A. Burkov, S.A. Pyachin, V.O. Krutikova, Formation of intermetallic coatings by electrospark deposition from aluminum and titanium granules, Hardening Technologies and Coatings (in Russian). 178 (2019) 451-455.
DOI: 10.3103/s1068375515020131
Google Scholar
[12]
A.D. Verkhoturov, L.M. Murzin, Mechanism of the electrical erosion of composite materials during electrospark alloying, Soviet Powder Metallurgy and Metal Ceramics. 12 (1973) 680–683.
DOI: 10.1007/bf00794396
Google Scholar
[13]
H. Aghajani, E. Hadavand, N.-S. Peighambardoust, S. Khameneh-asl, Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel. Surfaces and Interfaces. 18 (2020) 100392.
DOI: 10.1016/j.surfin.2019.100392
Google Scholar
[14]
R. Sitek, J. Kaminski, J. Borysiuk, H. Matysiak, K. Kubiak, K.J. Kurzydlowski. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method, Intermetallics. 36 (2013) 36-44.
DOI: 10.1016/j.intermet.2012.12.017
Google Scholar
[15]
M. Gizynski, S. Miyazaki, J. Sienkiewicz, S. Kuroda, H. Araki, H. Murakami, Z. Pakiela, A. Yumoto, Formation and subsequent phase evolution of metastable Ti-Al alloy coatings by kinetic spraying of gas atomized powders, Surf. Coat. Technol. 315 (2017) 240-249.
DOI: 10.1016/j.surfcoat.2017.02.053
Google Scholar
[16]
Q. Jia, D. Li, Z. Zhang, N. Zhang, W. Zhao, Comparison of oxidation resistance of Al–Ti and Al–Ni intermetallic formed in situ by thermal spraying, Mater. Res. 6 (2019) 096408.
DOI: 10.1088/2053-1591/ab2cfc
Google Scholar
[17]
J. Zhang, L. Zhu, A. Sun, X. Gu, Influence of laser shock processing on properties of SiCp/Cu composite weld crack restored by electro-spark overlaying. Transactions of the China Welding Institution. 30(12) (2009) 17-20.
Google Scholar
[18]
V.S. Chirkin, Thermophysical Properties of Materials for Nuclear Engineering. Atomizdat, Moscow, (1968).
Google Scholar
[19]
D. Holec, N. Abdoshahi, S. Mayer, H. Clemens, Thermal Expansion and Other Thermodynamic Properties of α2-Ti3Al and γ-TiAl Intermetallic Phases from First Principles Methods, Materials (Basel). 12 (2019) 1292.
DOI: 10.3390/ma12081292
Google Scholar
[20]
Z. Chen, Y. Zhou Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization, Surf. Coat. Technol. 201(3-4) (2006) 1503-1510.
DOI: 10.1016/j.surfcoat.2006.02.015
Google Scholar