Structural and Optical Properties of BiFeO3 via Polymer-Assisted Hydrothermal Synthesis under Different Weight of Chitosan

Article Preview

Abstract:

In this work, single phase Bismuth Ferrite, BiFeO3 was successfully synthesized by using hydrothermal method assisted with different weight (0.24 g, 0.36 g and 0.48 g) of Chitosan. Potassium hydroxide (KOH) were used as a mineralizer during the synthesis process for the precipitation. The samples were characterized for different properties such as structural and optical properties, and were then compared with previous works. The X-ray diffraction data for all the samples showed that the samples had a single phase belonging to R3c space group with perovskite rhombohedral structure at diffraction angle 32.0° to 32.5° even though the slight presence of secondary phase at diffraction angle 28° was detected. Scanning electron microscope revealed a decrement in particle size as the weight of Chitosan increased indicating effective used of Chitosan in controlling the agglomeration of the particles. All samples BiFeO3 assisted with and without Chitosan showed significant enhancement in energy gap where the obtained results showed a small energy gap values ranging from ~1.22 eV to ~1.88 eV determined from UV-vis absorbance characterization. Therefore, by the addition of Chitosan, the properties of BiFeO3 such as structural and optical have changed as well as preventing from the particle to agglomerate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

53-59

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.-W. Chu, K. Su, R. Pirich, N.-L. Yang, Three Approaches for the Synthesis of Multiferroic BiFeO3, 2010 IEEE Long Isl. Syst. Appl. Technol. Conf. (2010) 1–4.

Google Scholar

[2] P. Priyadharsini, A. Pradeep, B. Sathyamoorthy, G. Chandrasekaran, Enhanced multiferroic properties in La and Ce co-doped BiFeO3 nanoparticles, J. Phys. Chem. Solids 75(7) (2014) 797-802.

DOI: 10.1016/j.jpcs.2014.03.001

Google Scholar

[3] R. Pandey, C. Panda, P. Kumar, M. Kar, Phase diagram of Sm and Mn co-doped bismuth ferrite based on crystal structure and magnetic properties, J. Sol-Gel Sci. Technol. 85(1) (2018) 166–177.

DOI: 10.1007/s10971-017-4537-2

Google Scholar

[4] C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B - Condens. Matter Mater. Phys. 71(6) (2005) 1-4.

DOI: 10.1103/physrevb.71.060401

Google Scholar

[5] J. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, Y. He, Magnetic and dielectric properties of Ca-substituted BiFeO3 nanoferrites by the sol-gel method, J. Appl. Biomater. Funct. Mater. 16(1) (2018) 93-100.

DOI: 10.1177/2280800017754201

Google Scholar

[6] U. Nuraini, S. Suasmoro, Crystal structure and phase transformation of BiFeO3 multiferroics on the temperature variation, J. Phys. Conf. Ser. 817 (2017) 12059.

DOI: 10.1088/1742-6596/817/1/012059

Google Scholar

[7] X.Z. Chen, Z.C. Qiu, J.P. Zhou, G. Zhu, X.B. Bian, P. Liu, Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method, Mater. Chem. Phys. 126(3) (2011) 560-567.

DOI: 10.1016/j.matchemphys.2011.01.027

Google Scholar

[8] D. Suastiyanti, M. Wijaya, Synthesis of BiFeO3 Nanoparticle and Single Phase by Sol-Gel Process for Multiferroic Material, ARPN J. Eng. Appl. Sci. 11(2) (2016) 901-905.

Google Scholar

[9] Z. Cheng, A. Li, P. Wang, S. Dou, K. Ozawa, H. Kimura, S. Zhang, T. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J. Appl. Phys. 103(7) (2008) 07E507-1-07E507-3.

DOI: 10.1063/1.2839325

Google Scholar

[10] M.S. Sazali, M.K. Yaakob, Z. Mohamed, M.H. Mamat, O.H. Hassan, N.H. Mohd Kaus, M.Z.A. Yahya, Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO3: Effects on structural, magnetic and optical properties, Results in Physics 15 (2019) 102740.

DOI: 10.1016/j.rinp.2019.102740

Google Scholar

[11] F. Niu, T. Gao, N. Zhang, Z. Chen, Q. Huang, L. Qin, X. Sun, Y. Huang, Hydrothermal Synthesis of BiFeO3 Nanoparticles for Visible Light Photocatalytic Applications, J. Nanosci. Nanotechnol. 15(12) (2015) 9693-9698.

DOI: 10.1166/jnn.2015.10682

Google Scholar

[12] F. Niu, T. Gao, L. Qin, Z. Chen, Q. Huang, N. Zhang, S. Wang, X. Sun, Y. Huang, Polyvinyl Alcohol (PVA)-assisted Synthesis of BiFeO3 Nanoparticles for Photocatalytic Applications, J. New Mat. Electrochem. Systems 18 (2015) 069-073.

DOI: 10.14447/jnmes.v18i2.370

Google Scholar

[13] A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO3 ceramics, Ceram. Int. 42(13) (2016) 14805-14812.

DOI: 10.1016/j.ceramint.2016.06.113

Google Scholar

[14] H.A.M.A. Azmy, N.A. Razuki, A.W. Aziz, N.S.A. Satar, N.H.M. Kaus, Visible Light Photocatalytic Activity of BiFeO3 Nanoparticles for Degradation of Methylene Blue, J. Phys. Sci. 28(2) (2017) 85-103.

DOI: 10.21315/jps2017.28.2.6

Google Scholar

[15] T. Gao, Z. Chen, F. Niu, D. Zhou, Q. Huang, Y. Zhu, L. Qin, X. Sun, Y. Huang, Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties, J. Alloys Compd. 648 (2015) 564-570.

DOI: 10.1016/j.jallcom.2015.07.059

Google Scholar

[16] L.J. Di, H. Yang, T. Xian, J.Y. Ma, H.M. Zhang, J.L. Jiang, Z.Q. Wei, W.J. Feng, Growth of BiFeO3 Microcylinders under a Hydrothermal Condition, J. Nanomater. 2015(3) (2015) 1-5.

Google Scholar

[17] Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles, Ceram. Int. 34(6) (2008) 1569-1571.

DOI: 10.1016/j.ceramint.2007.04.013

Google Scholar

[18] X. Wang, W. Mao, Q. Zhang, Q. Wang, Y. Zhu, J. Zhang, T. Yang, J. Yang, X. Li, W. Huang, PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO3 uniform nanostructures with enhanced photocatalytic activities, J. Alloys Compd. 677 (2016) 288-293.

DOI: 10.1016/j.jallcom.2016.02.246

Google Scholar

[19] C. Hao, F. Wen, J. Xiang, H. Hou, W. Lv, Y. Lv, W. Hu, Z. Liu, Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer, Mater. Res. Bull. 50 (2014) 369-373.

DOI: 10.1016/j.materresbull.2013.11.039

Google Scholar

[20] S.N.A. Rusly, I. Ismail, K.A. Matori, Z. Abbas, A.H. Shaari, Z. Awang, I.R. Ibrahim, F.M. Idris, M.H. Mohd Zaid, M.K.A. Mahmood, I.H. Hasan, Influence of different BFO filler content on microwave absorption performances in BiFeO3/epoxy resin composites, Ceram. Int. 46(1) (2020) 737-746.

DOI: 10.1016/j.ceramint.2019.09.027

Google Scholar

[21] M. Kobayashi, N. Kumada, A. Miura, T. Takei, I. Fujii, S. Wada, Hydrothermal Synthesis of BiFeO3 Fine Particles, Trans. Mat. Res. Soc. Japan 38(1) (2013) 53-55.

DOI: 10.14723/tmrsj.38.53

Google Scholar

[22] Y. Lv, J. Xing, C. Zhao, D. Chen, J. Dong, H. Hao, X. Wu, Z. Zheng, The effect of solvents and surfactants on morphology and visible-light photocatalytic activity of BiFeO3 microcrystals, J. Mater. Sci. Mater. Electron. 26(3) (2015) 1525-1532.

DOI: 10.1007/s10854-014-2571-1

Google Scholar

[23] S. Basu, M. Pal, D. Chakravorty, Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles, J. Magn. Magn. Mater. 320(24) (2008) 3361-3365.

DOI: 10.1016/j.jmmm.2008.07.012

Google Scholar

[24] F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, S. Lu, Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method, Materials 11(11) (2018) 2208.

DOI: 10.3390/ma11112208

Google Scholar

[25] J. Khajonrit, N. Prasoetsopha, T. Sinprachim, P. Kidkhunthod, S. Pinitsoontorn, S. Maensiri, Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3 nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol. 8(1) (2017) 015010.

DOI: 10.1088/2043-6254/aa597d

Google Scholar