Band Structure and Thermoelectric Properties of Ni(x)Zn(1-x)Fe2O4

Article Preview

Abstract:

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

28-34

Citation:

Online since:

May 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, K. Guo, I. Veremchuk, U. Burkhardt, X. Feng, J.Grin, Z. Jingtai, Thermoelectric properties of Eu- and Na-substituted SnTe, J. Rare Earths 33 (2015) 1175-81.

DOI: 10.1016/s1002-0721(14)60543-3

Google Scholar

[2] J. He, X. Tan, J, Xu. G. Liu, H. Shao, Y. Fu, X. Wang, Z. Liu, H. Jiang, J. Jiang, Valence band engineering and thermoelectric performance optimization in SnTe by Mnalloying via a zone-melting method, J. Mater. Chem. A 3 (2015) 19974-19979.

DOI: 10.1039/c5ta05535k

Google Scholar

[3] S. Janpreet, S. Gurinder, K. Aman, S. Tripathi, Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5, Journal of Solid State Chemistry 260 (2018) 124-131.

DOI: 10.1016/j.jssc.2018.01.021

Google Scholar

[4] Y. Pei, A. LaLonde, H. Wang, G. Snyder, Low effective mass leading to high thermoelectric performance, Energy Environ. Sci. 5 (2012) 7963-9.

DOI: 10.1039/c2ee21536e

Google Scholar

[5] H. Peng, J. Song, M. Kanatzidis, A. Freeman. Electronic structure and transport properties of doped PbSe, Phys. Rev. B 84 (2011) 125207.

DOI: 10.1103/physrevb.84.125207

Google Scholar

[6] M. Gaultois, T. Sparks, C. Borg, R. Seshadri, W. Bonificio, D. Clarke, Data-driven review of thermoelectric materials: performance and resource considerations, Chem. Mater. 25 (2013) 2911-2920.

DOI: 10.1021/cm400893e

Google Scholar

[7] Z. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Progress in Natural Science: Materials International 22 (2012) 535–549.

DOI: 10.1016/j.pnsc.2012.11.011

Google Scholar

[8] D. Ravinder, Thermoelectric power studies of zinc substituted copper ferrites, J. Alloy. Compd. 291 (1999) 208–214.

DOI: 10.1016/s0925-8388(99)00287-x

Google Scholar

[9] S. Phanish, P. Ohanisri, S. Abhiraj, E. John, SQDFT: Spectral Quadrature method for large-scale parallel Kohn–Sham calculations at high temperature, Computer Physics Communications 224 (2018) 288-298.

DOI: 10.1016/j.cpc.2017.12.003

Google Scholar

[10] M. Gabal, Structural and magnetic properties of nano-sized Cu–Cr ferrites prepared through a simple method using egg white, Materials Letters 64 (2010) 1887–1890.

DOI: 10.1016/j.matlet.2010.05.022

Google Scholar

[11] L. Han, N. Nong, L. Hung, T. Holgate, N. Pryds, M. Ohtaki, S. Linderoth, The influence of α-and γ-Al2O3 phases on the thermoelectric properties of Al doped ZnO, J. Alloy. Compd. 555 (2013) 291–296.

DOI: 10.1016/j.jallcom.2012.12.091

Google Scholar

[12] S. Mazen, A. Taher, The conduction mechanism of Cu–Si ferrite, Journal of Alloys and Compounds 498 (2010) 19–25.

DOI: 10.1016/j.jallcom.2010.03.121

Google Scholar

[13] A. Banik, U. Shenoy, S. Anand, U. Waghmare, K. Biswas, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties, Chem. Mater. 27 (2015) 581-7.

DOI: 10.1021/cm504112m

Google Scholar

[14] A. Sutka, G. Strikis, G. Mezinskis, A. Lusis, J. Zavickis, J. Kleperis, D. Jakovlevs, Properties of Ni-Zn ferrite thin films deposited using spray pyrolysis, Thin Solid Films 526 (2012) 65-69.

DOI: 10.1016/j.tsf.2012.11.017

Google Scholar

[15] G. Sun, J. Li, J. Sun, X. Yang, The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel-zinc ferrites, Journal of Magnetism and Magnetic Materials 281(2004) 173-177.

DOI: 10.1016/j.jmmm.2004.04.099

Google Scholar

[16] M. Su, C. Elsbernd, T. Mason, Jonker Pecir, analysis of oxide superconductors, Journal of the American Ceramic Society 73 (1990) 415-419.

DOI: 10.1111/j.1151-2916.1990.tb06527.x

Google Scholar