Electroresistance Effect due to Mo Substitution at Mn-Site in Monovalent Doped La0.85Ag0.15Mn1-xMoxO3 (x = 0.00 and 0.05) Manganites

Article Preview

Abstract:

The electroresistance, ER effect of La0.85Ag0.15Mn1-xMoxO3 (x = 0.00 and 0.05) samples prepared using solid method are investigated. The increased of applied current from 5 mA to 10 mA does not change the metal-insulator transition temperature, TMI for both samples however decreased the resistivity in the temperature region of 50 K – 300 K. Both samples exhibit large ER effect at low temperature region. At TMI, the ER value is 75.5% (x =0) and decrease to 34.15% (x = 0.05). However, at 300 K, the value of ER increases to 57 % for Mo substituted sample, and the value decreases to 6.4% for the x =0 sample. The enhanced ER effect at 300 K may be due to the growth of conductive filaments under increased applied current. The increase of applied current may perturb the arrangement of magnetic inhomogeneity induced by Mo substitution, result in reduction of resistivity and lead to the observation of ER effect. These findings suggest potential application of La0.85Ag0.15Mn1-xMoxO3 (x = 0.05) in spintronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

17-21

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ouyang, J. He, J. Hu, S.X. Wang, A current sensor based on the giant magnetoresistance effect: Design and potential smart grid applications, Sensors (Switzerland) 12(119) (2012) 15520–15541.

DOI: 10.3390/s121115520

Google Scholar

[2] S. Chen, R. Wang, H. Wang, C. Yang, Effect of heat treatment on electroresistance in Nd0.67Sr0.33MnO3 ceramics, J. Rare Earths 28(2) ( 2010) 251–254.

DOI: 10.1016/s1002-0721(09)60090-9

Google Scholar

[3] R. Kumar, A.K. Gupta, V. Kumar, G.L. Bhalla, N. Khare, Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite, J. Phys. Chem. Solids 68(12) (2007) 2394–2397.

DOI: 10.1016/j.jpcs.2007.07.081

Google Scholar

[4] L. Zhang, X. Li, F. Wang, T. Wang, W. Shi, Colossal electroresistance and magnetoresistance effect in polycrystalline perovskite cobaltites Nd1-xSrxCoO3 (x = 0.1, 0.2, 0.3), Mater. Res. Bull. 48(3) (2013) 1088–1092.

DOI: 10.1016/j.materresbull.2012.11.105

Google Scholar

[5] R. Mohan, N. Kumar, B. Singh, N.K. Gaur, S. Bhattacharya, S. Rayaprol, A. Dogra, S.K. Gupta, S.J. Kim, R.K. Singh, Colossal electroresistance in Sm0.55Sr0.45MnO3, Journal of Alloys and Compounds 508(2) (2010) 32-35.

DOI: 10.1016/j.jallcom.2010.08.085

Google Scholar

[6] S.T. Mahmud, M.M. Saber, H.S. Alagoz, K. Biggart, R. Bouveyron, M. Khan, J. Jung, K.H. Chow, Disorder enhanced intrinsic electroresistance in Sm0.60Sr0.40Mn1-xFexO3, Appl. Phys. Lett. 100(23) (2012) 232406.

DOI: 10.1063/1.4726265

Google Scholar

[7] S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, J. Fang, Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3, J. Magn. Magn. Mater. 248(1) (2002) 26–33.

DOI: 10.1016/s0304-8853(02)00017-3

Google Scholar

[8] N. Ibrahim, A.K. Yahya, S.S. Rajput, S. Keshri, M.K. Talari, Double metal-insulator peaks and effect of Sm3+ substitution on magnetic and transport properties of hole-doped La0.85Ag 0.15MnO3, J. Magn. Magn. Mater. 323(16) (2011) 2179–2185.

DOI: 10.1016/j.jmmm.2011.03.027

Google Scholar

[9] G.N. Rao, J.W. Chen, S. Neeleshwar, Y.Y. Chen, M.K. Wu, Enhanced magnetoresistance and Griffiths phase induced by Mo substitution in La0.7Ca0.15Sr0.15Mn1-xMoxO3 (0 ≤ x ≤ 0.05), J. Phys. D: Apply. Phys. 42 (2009) 095003-097011.

DOI: 10.1088/0022-3727/42/9/095003

Google Scholar