Structural and Dielectric Analysis of La0.88Bi0.12Mn0.80Ni0.20O3 Composite

Article Preview

Abstract:

Composite La0.88Bi0.12Mn0.80Ni0.20O3 was synthesized using the conventional solid-state reaction method with sintering temperature of 1200 °C for 12 hours and the dielectric properties investigated. The X-ray diffraction result shows that the composite has a rhombohedral structure with lattice parameter of a = b = c = 5.5136 Ǻ. Scanning electron microscope shows grains with approximately from 0.8 to 5.4 μm in size with presence of voids. The dielectric permittivity, εʹ and dielectric loss, εʺ were measured in the range of 298 K to 473 K where both are temperature and frequency dependent. At 1 kHz to 100 kHz, the εʹ is around 10000 and the dielectric loss tangent, tan δ is below 1.5. The electric behavior of this composite is best represented by Quasi-dc model which consists of two universal capacitors in parallel. Parameters value from the fitting indicated that high correlations of electrons between inter and intra-clusters. The activation energy, Ea calculated from the conductivity of the sample gives a value of 0.116 eV. Vibrating sample magnetometer shows that the La0.88Bi0.12Mn0.80Ni0.20O3 has a magnetic coercivity, Hc of 36.109 G and retentivity, Br, valued 2.7504 x 10-3 emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

35-45

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.D. Zhao, J. Park, R.J. Jung, H.J. Noh, S.J. Oh, Structure, magnetic and transport properties of La1-xBixMnO3, J. Magn. Magn. Mater. 280 (2004) 404-411.

DOI: 10.1016/j.jmmm.2004.06.024

Google Scholar

[2] V.S. Kolat, S. Atalay, T. Izgi, H. Gencer, N. Bayri, Structural, Magnetic, and Magnetocaloric Properties of La1-xBixMnO3 (x = 0..01, 0.03, 0.06, 0.1, 0.2) Compounds, Metall. Mater. Trans. A. 46A (2015) 2591-2597.

DOI: 10.1007/s11661-015-2839-y

Google Scholar

[3] C.R. Serrao, J.R. Sahu, A. Ghosh, Charge-order Driven Multiferroic and magneto dielectric properties of rare earth manganates, Bull. Mater. Sci. 33(2) (2010) 169-178.

DOI: 10.1007/s12034-010-0024-x

Google Scholar

[4] T. Ogawa, H. Shino, H. Takeuchi, Y. Koizumi, Electrical and Magnetic Properties and Colossal Magnetoresistance Effect of La1-xBixMnO3, Jpn. J. App. Phys. 45(11) (2006) 8666-8672.

Google Scholar

[5] T.Izgi, V.S. Kolat, N. Bayri, H. Gencer, S. Atalay, Structural, magnetic and magnetocaloric properties of the compound La0.94Bi0.06MnO3, J. Magn. Magn. Mater. 372 (2014) 112-116.

DOI: 10.1016/j.jmmm.2014.07.037

Google Scholar

[6] H. Wu, H. Wang, Electrochemical Synthesis of Nickel Oxide Nanoparticulate Films on Nickel Foils for High-performance Electrode Materials of Supercapacitors, Int. J. Electrochem. Sci. 7 (2012) 4405-4417.

Google Scholar

[7] M. Guziewicz, J. Grockowski, M. Borysiewicz, E. Kaminska, J.Z. Domagala., W. Rzodkiewicz, B.S. Witkowski, K. Golaszewska, R. Kruszka, M. Ekielski, A. Piotrowski, Electrical and optical properties of NiO films deposited by magnetron sputtering, Optica Applicata. 41(2) (2011) 431 – 440.

DOI: 10.1016/j.proeng.2011.12.090

Google Scholar

[8] S. Sriram, A. Thayumanavan, Structural,Optical and Electrical Properties of NiO Thin Films Prepared by Low Cost Spray Pyrolysis Technique, Int. J. Mater. Sci. Eng. 1(2) (2012) 118-121.

DOI: 10.12720/ijmse.1.2.118-121

Google Scholar

[9] L. Jian-Qing, Y. Ling-Feng, C. Zi-Peng, M. Zheng-Zheng, Magnetic property of Ni-doped Bi5Ti3FeO15 multiferroic ceramics, Adv. Mater. Res. 1082 (2015) 57-60.

Google Scholar

[10] M.W. Zhu, Z.J. Wang, Y.N. Chen, H.L. Wang, Z.D. Zhang, Effect of grain boundary on electrical properties of polycrystalline lanthanum nickel oxide thin films, App. Phys. A. 112(4) (2012) 1011-1018.

DOI: 10.1007/s00339-012-7466-5

Google Scholar

[11] Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H Kimura., S.J. Zhang, T.R. Shrout, Structure, ferroelectric properties, and magnetic properties of La-doped bismuth ferrite, J. App. Phys. 103(2008) 07E507-1 – 07E507-3.

DOI: 10.1063/1.2839325

Google Scholar

[12] V. Dayal, V.P. Kumar, Investigation of complex magnetic state in La0.8Bi0.2MnO3, J. Magn. Magn. Mater. 361 (2014) 212-218.

Google Scholar

[13] J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater. 2(3) (1990) 132-138.

DOI: 10.1002/adma.19900020304

Google Scholar

[14] V.V. Soman, V.M. Nanoti, D.K. Kulkarni, V.V. Soman, Effect of substitution of ZN-Ti on magnetic and dielectric properties of Ba Fe12O19, Physics Procedia. 54 (2014) 30-37.

DOI: 10.1016/j.phpro.2014.10.033

Google Scholar

[15] R.S. Devan, B.K. Chougule, Magnetic properties and dielectric behavior in ferrite/ferroelectric particulate composites, Phys. B. 393 (2007) 161-166.

DOI: 10.1016/j.physb.2007.01.001

Google Scholar

[16] M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, A. Agarwal, Effect of Mn doping on crystal structure, dielectric and magnetic ordering of Bi0.8Ba0.2FeO mutiferroic, Ceram. Int. 42 (2016) 5403-5411.

DOI: 10.1016/j.ceramint.2015.12.077

Google Scholar

[17] H. Moradmard, S.F. Shayatesh, P. Tohidi, Z. Abbas, M. Khalegi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles, J. Alloys Compd. 650 (2015) 116-122.

DOI: 10.1016/j.jallcom.2015.07.269

Google Scholar

[18] A.K. Sinha, B. Bhushan, Jagannath, R.K. Sharma, S. Sen, B.P. Mandal, S.S., P. Bhatt, C.L. Prajapat, A. Priyam, S.K. Mishra, S.C. Gadkari, Enhanced dielectric, magnetic Meena and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route, Results Phys. 13 (2019) 102299.

DOI: 10.1016/j.rinp.2019.102299

Google Scholar

[19] P. Ren, P. Liu, B Xia., X. Zou, J. Wang, L Wang, Dielectric dynamics of epitaxial BiFeO3 thin films, AIP Adv. 3 (2012) 022133: 1-12.

DOI: 10.1063/1.4721670

Google Scholar

[20] A.K. Joncher, Dielectric relaxation in solids, J. Phys. D: Appl. Phys. 32 (1999) 57-70.

Google Scholar

[21] S.S. Chougule, B. K. Chougule, Response of dielectric behavior and magnetoelectric effect in ferroelectric rich (x)Ni0.9Zn0.1Fe2O4+(1-x)PZT ME composites, J. Alloys Compd. 456 (2007) 441-446.

DOI: 10.1016/j.jallcom.2007.02.089

Google Scholar

[22] M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg-Zn ferrite. J Alloys Compd. 233 (1996) 129-135.

DOI: 10.1016/0925-8388(96)80044-2

Google Scholar

[23] M. Li, A. Feteira, D. C. Sinclair, Origin of the high permittivity in (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3 ceramics, J. App. Phys. 98 (2005) 084101 1-5.

DOI: 10.1063/1.2089159

Google Scholar

[24] S.S. Chougule, B.K. Chougule, Studies on electrical properties and the magnetoelectric effect on ferroelectric-rich (x)Ni0.8Zn0.2Fe2O4 + (1 - x) PZT ME composites, Smart Mater. and Struct. 16 (2007) 493-497.

DOI: 10.1088/0964-1726/16/2/030

Google Scholar

[25] Y.J. Wu, Y.Q. Lin, S.P. Gu, X.M. Chen, Synthesis and dielectric characteristics of La0.5Bu0.5MnO3 Ceramics, Appl. Phys. A. 97 (2009) 191-194.

Google Scholar

[26] J. Yarwood, Electricity and Magnetism, University Tutorial Press Ltd, London,(1973).

Google Scholar

[27] A.R. Shelke, G.S. Ghodake, D.-Y. Kim, A.V. Ghule, S.D. Kaushik, C.D. Lokhande, Correlation of structural, transport and magnetic properties in La1-xZrxMnO3 manganite samples, Ceram. Int. 42 (2016) 12038-12045.

DOI: 10.1016/j.ceramint.2016.04.131

Google Scholar

[28] M.N.O. Sadiku, Elements of Electromagnetics, 3rd ed., Oxford University Press, New York, (2003).

Google Scholar