Microwave Absorption Properties of Monovalent Doped La0.85Ag0.15MnO3 Manganites Prepared by Solid State Method

Article Preview

Abstract:

The microwave absorption properties of La0.85Ag0.15MnO3 prepared by solid state method was investigated. Analysis of X-ray diffraction data using a refinement technique confirmed the rhombohedral structure of the samples. The microstructure of the sample characterised from field emission scanning electron microscope micrographs showed irregular grain shapes with grain sizes ranging from 800 to 1500 nm. M-H curves revealed the weak ferromagnetic properties of the sample at room temperature. The real and imaginary parts of permittivity and permeability as well as microwave reflection loss were measured by a vector network analyser in the 8–18 GHz frequency range. The La0.85Ag0.15MnO3 sample showed a minimum reflection loss of –57.2 dB at 16.41 GHz, with a –10dB bandwidth (corresponding to reflection loss below –10 dB, or 90% absorption) of 2.67 GHz. The microwave absorption of La­­­­0.85Ag0.15MnO3 mainly arises from the conduction loss and domain wall motion which contributed to dielectric loss and magnetic loss, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

22-27

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica 16(3) (1950) 337–349.

DOI: 10.1016/0031-8914(50)90033-4

Google Scholar

[2] M. Baldini, T. Muramatsu, M. Sherafati, H. Mao, L. Malavasi, P. Postorino, S. Satpathy, V.V. Struzhkin, Origin of colossal magnetoresistance in LaMnO3 manganite, Proc. Natl. Acad. Sci. U. S. A. 112(35) (2015) 10869–10872.

DOI: 10.1073/pnas.1424866112

Google Scholar

[3] L. Chen, X. Guo, J. Gao, Colossal elastoresistance, electroresistance and magnetoresistance in Pr0.5Sr0.5MnO3 thin films, J. Magn. Magn. Mater. 405 (2016) 249–252.

DOI: 10.1016/j.jmmm.2015.12.074

Google Scholar

[4] K.S. Zhou, J.J. Deng, L.S. Yin, S.H. Ma, S.H. Gao, Microwave absorbing properties of La0.8Ba0.2MnO3 nano-particles, Trans. Nonferrous Met. Soc. China 17(5) (2007) 947–950.

DOI: 10.1016/s1003-6326(07)60205-2

Google Scholar

[5] G. Li, G.-G. Hu, H.-D. Zhou, X.-J. Fan, X.-G. Li, Absorption of microwaves in La1-xSrxMnO3 manganese powders over a wide bandwidth, J. Appl. Phys. 90(11) (2001) 5512–5514.

DOI: 10.1063/1.1415053

Google Scholar

[6] R.P. Pawar, V. Puri, Electromagnetic and Microwave Absorption Behavior of Strontium Calcium Manganite in the 8–12 GHz Frequency Spectrum, Synth. React. Inorganic, Met. Nano-Metal Chem. 45(2) (2015) 225–230.

DOI: 10.1080/15533174.2013.831882

Google Scholar

[7] S. Huang, L. Deng, K. Zhou, Z. Hu, S. Sun, Y. Ma, P. Xiao, Effect of Ag substitution on the electromagnetic property and microwave absorption of LaMnO3, J. Magn. Magn. Mater. 324(19) (2012) 3149–3153.

DOI: 10.1016/j.jmmm.2012.05.024

Google Scholar

[8] F.M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, I.R. Ibrahim, Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies, J. Magn. Magn. Mater. 405 (2016) 197–208.

DOI: 10.1016/j.jmmm.2015.12.070

Google Scholar

[9] S.A. Saptari, A. Manaf, B. Kurniawan, Particle size effect on microwave absorbing of La0.67Ba0.33Mn0.94Ti0.06O3 powders prepared by mechanical alloying with the assistance of ultrasonic irradiation, AIP Conference Proceedings 1719 (2016) 030031.

DOI: 10.1063/1.4943726

Google Scholar

[10] S.L. Ye, W.H. Song, J.M. Dai, K. Wang, S.G. Wang, J.J. Du, Y.P. Sun, J. Fang, J.L. Chen, B.J. Gao, Large room-temperature magnetoresistance and phase separation in La1-xNaxMnO3 with 0.1≤x≤0.3, J. Appl. Phys. 90(6) (2001) 2943–2948.

DOI: 10.1063/1.1396823

Google Scholar

[11] S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method, J. Mater. Sci. Mater. Electron. 25(4) (2014) 1915–(1921).

DOI: 10.1007/s10854-014-1820-7

Google Scholar

[12] M.W. Shaikh, I. Mansuri, M.A. Dar, D. Varshney, Structural and transport properties of La1−xAgxMnO3 (x=0.075, 0.1, 0.125 and 0.15) manganites, Mater. Sci. Semicond. Process. 35 (2015) 10–21.

DOI: 10.1016/j.mssp.2015.02.061

Google Scholar

[13] T. Elovaara, H. Huhtinen, S. Majumdar, P. Paturi, Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1-xCaxMnO3(x=0.00.5), J. Phys. Condens. Matter 24(21) (2012) 216002.

DOI: 10.1088/0953-8984/24/21/216002

Google Scholar

[14] F.J.G. Landgraf, M.F. de Campos, J. Leicht, Hysteresis loss subdivision, J. Magn. Magn. Mater. 320(20) (2008) 2494–2498.

DOI: 10.1016/j.jmmm.2008.04.003

Google Scholar

[15] K. Pubby, S. Bindra Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites, Mater. Lett. 244 (2019) 186–191.

DOI: 10.1016/j.matlet.2019.02.051

Google Scholar

[16] S. Supriya, S. Kumar, M. Kar, Grain size and grain boundary effect on dielectric behavior of nanocrystalline cobalt ferrite, 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC) (2017) 165–166.

DOI: 10.1109/nmdc.2017.8350539

Google Scholar

[17] C. Ge, L. Wang, G. Liu, T. Wang, H. Chen, Effects of particle size on electromagnetic properties of spherical carbonyl iron, J. Mater. Sci. Mater. Electron. 30(9) (2019) 8390–8398.

DOI: 10.1007/s10854-019-01156-9

Google Scholar

[18] S. Zhang, Q. Cao, M. Zhang, L. Cai, Q. Yan, Effects of particle size on electromagnetic and microwave absorption properties of La0.7Sr0.3MnO3±δ- epoxy composite, Int. J. Appl. Ceram. Technol. 11(4) (2014) 762–772.

DOI: 10.1111/ijac.12091

Google Scholar

[19] M.A. Islam, M.Z. Rahaman, M.M. Hasan, A.K.M.A. Hossain, Analysis of grain growth, structural and magnetic properties of Li-Ni-Zn ferrite under the influence of sintering temperature, Heliyon 5(2) (2019) e01199.

DOI: 10.1016/j.heliyon.2019.e01199

Google Scholar