Effect of Fe3+ Partial Substitution at Mn-Site on Electroresistance Behaviour in La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) Manganites

Article Preview

Abstract:

La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) were prepared by using solid state synthesis method to investigate the effect of Fe3+ substitution at Mn-site on electrical behaviour and structural properties. An analysis of X-ray diffraction, XRD data using refinement method shown both x = 0 and x = 0.02 samples were in single phased and crystallized in rhombohedral structural with Pnma space group. From ρ vs T curves shown resistivity decreased under increased of applied current of 10 mA to 20 mA for both samples in the temperature range of 20 K-300 K. The larger electroresistance, ER effect observed for x = 0.02 in temperature range of 20 K – 180 K compared to x = 0 sample is suggested due to the development of filamentary conduction path under increased of applied current. It is suggested that Fe substitution enhanced magnetic inhomogeneity which contribute to the growth of formation of conductive path under increased of applied current, lead to increase of ER effect. In the temperature range of 180 K – 300 K, the observed decreased in ER for Fe substituted sample (x = 0.02) is suggested due to the increased of scattering effect and reduction of available hopping site in metallic region and insulating region, respectively. Restriction in the movement of charge carrier had weakened the ER effect for Fe substituted sample. The observed ER effect indicates the compound has a potential for application such as for non-volatile memory elements.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

3-9

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. E. A. Mohamed, B. Hernando, M. E. Díaz-garcía, Manganite, J. Alloys Compd. (2016) 1–7.

Google Scholar

[2] S. T. Mahmud, M. M. Saber, H. S. Alagoz, K. Biggart, R. Bouveyron, M. Khan, J. Jung, and K. H. Chow, Disorder enhanced intrinsic electroresistance in Sm0.60Sr0.40Mn1-xFexO3, Appl. Phys. Lett. 100(23) (2012) 1–5.

DOI: 10.1063/1.4726265

Google Scholar

[3] R. Kumar, A. K. Gupta, V. Kumar, G. L. Bhalla, N. Khare, Temperature dependence of electroresistance for La0.67Ba0.33MnO3manganite, J. Phys. Chem. Solids 68(12) (2007) 2394–2397.

DOI: 10.1016/j.jpcs.2007.07.081

Google Scholar

[4] R. Mohan, N.Kumar, B.Singh, N.K. Gaur, S.Bhattacharya, S.Rayaprol, A.Dogra, S.K. Gupta, S.J. Kim, R.K. Singh, Colossal electroresistance in Sm0.55Sr0.45MnO3, J. Alloys Compd. 508(2) (2010) L32–L35.

DOI: 10.1016/j.jallcom.2010.08.085

Google Scholar

[5] G. Venkataiah, P. V. Reddy, Structural, magnetic and magnetotransport behavior of some Nd-based perovskite manganites, Solid State Commun. 136(2) (2005) 114–119.

DOI: 10.1016/j.ssc.2005.04.014

Google Scholar

[6] N. Abdelmoula, A. Cheikh-Rouhou, L. Reversat, Structural , magnetic and magnetoresistive properties of La0.7Sr0.3-xNaxMnO3 manganites, Journal of Physics. Condensed Matter 13 (2001) 449–458.

DOI: 10.1088/0953-8984/13/3/307

Google Scholar

[7] Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, Y. J. Lin, Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors, J. Alloys Compd. 439(1–2) (2007) 367–375.

DOI: 10.1016/j.jallcom.2006.08.269

Google Scholar

[8] W. Peng, A. Zevalkink, Limits of cation solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) alloys, Materials (Basel) 12(4) (2019) 1–8.

DOI: 10.3390/ma12040586

Google Scholar

[9] I. Mansuri, D. Varshney, Structure and electrical resistivity of La1-xBaxMnO3 (0.25 ≤ x ≤ 0.35) perovskites, Journal of Alloys and Compounds 513 (2012) 256–265.

DOI: 10.1016/j.jallcom.2011.10.032

Google Scholar

[10] S. Winarsih, B. Kurniawan, A. Imaduddin, A. Manaf, Electrical properties of La0.7Ba0.297Ca0.003MnO3 obtained by low temperature sol-gel synthesis, AIP Conf. Proc. 1862 (2017) 3–8.

DOI: 10.1063/1.4991148

Google Scholar

[11] S. Singh, D. Singh, Structural, magnetic and electrical properties of Fe-doped perovskite manganites La 0.8Ca0.15Na0.05Mn1−xFexO3 (x = 0, 0.05, 0.10 and 0.15), J. Alloys Compd. 702 (2017) 249–257.

DOI: 10.1016/j.jallcom.2017.01.154

Google Scholar

[12] L. Joshi, V. Dayal, N. Rama, S. Keshri, Existence of Griffiths phase in La0.67Ca0.33Mn0.93Fe0.07O3, Journal of Alloys and Compounds 479 (2009) 879–882.

DOI: 10.1016/j.jallcom.2009.01.140

Google Scholar

[13] L. Liu, Y.Liu, J.Miao, Z.Lü, X.Wang, Y.Sui, Z.Liu, Y.Li, Q.Huang, D.Shang, W.Su, Magnetic properties and colossal magnetoresistance of La5/6Na1/6Mn1-yFeyO3with 0 ≤ y ≤ 0.10, J. Alloys Compd. 427(1–2) (2007) 11–14.

DOI: 10.1016/j.jallcom.2006.02.066

Google Scholar

[14] N. Kumar, H. Kishan, A. Rao, V. P. S. Awana, Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1-xFexO3 (0 ≤ x ≤ 1), J. Alloys Compd. 502(2) (2010) 283–288.

DOI: 10.1016/j.jallcom.2010.04.187

Google Scholar