Modeling of Capillary Pattern Collapse on Sub-5nm Pillars Using Molecular Dynamics

Article Preview

Abstract:

Molecular dynamics simulations were used to model <100> silicon pillars with diameter and spacing of 2.2nm and in a square lattice. Isopropanol (IPA) was added as a wetting liquid, and evaporation of the IPA was simulated to induce capillary forces that can cause pattern collapse. The cylinders were stable up to an aspect ratio of 8, while pillars higher than that collapsed. Additionally we simulated the thermal vibration of silicon pillars with diameters and spacing of both 2.2nm and 4.3nm without the presence of liquid at 300K. The Young's modulus of these pillars was estimated using the mean square displacement of the vibrating pillar tips, and results showed that the modulus decreases significantly from the bulk value for these structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 346)

Pages:

117-122

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tanaka, M. Morigami, and N. Atoda, Jpn. J. Appl. Phys., 32(12S), 6059 (1993).

Google Scholar

[2] S. F. Chini and A. Amirfazli, Langmuir, 26(16), 13707 (2010).

Google Scholar

[3] M. Kotera and N. Ochiai, Microelectronic Engineering, 78-79, 515 (2005).

Google Scholar

[4] I. Vos, D. Hellin, J. Vertommen, M. Demand, and W. Boullart, ECS Trans., 41(5), 189 (2011).[5] N. Vrancken, G. Vereecke, S. Bal, S. Sergeant, G. Doumen, F. Holsteyns, H. Terryn, S. de Gendt, and X. M. Xu, Solid State Phenomena, 255, 136 (2016).

DOI: 10.4028/www.scientific.net/ssp.255.136

Google Scholar

[6] N. Vrancken, T. Ghosh, U. Anand, Z. Aabdin, S. W. Chee, Z. Baraissov, H. Terryn, S. D. Gendt, Z. Tao, X. Xu, F. Holsteyns, and U. Mirsaidov, J. Phys. Chem. Lett., 11(7), 2751 (2020).

DOI: 10.1021/acs.jpclett.0c00218

Google Scholar

[7] A. Mallavarapu, P. Ajay, and S. V. Sreenivasan, Nano Lett., 20(11), 7896 (2020).

Google Scholar

[8] H. Liu and G. Cao, Scientific Reports, 6, 23936 (2016).

Google Scholar

[9] T. Namazu, Y. Isono, and T. Tanaka, Journal of Microelectromechanical Systems, 9(4), 450 (2000).

Google Scholar

[10] Q. Jin, T. Li, P. Zhou, and Y. Wang, J. Nanomaterials, 2009, 6:1 (2009).

Google Scholar

[11] B. Lee and R. E. Rudd, Phys. Rev. B, 75(4), 041305 (2007).

Google Scholar

[12] X. M. Xu, N. Vrancken, G. Vereecke, S. Suhard, G. Pourtois, and F. Holsteyns, Solid State Phenomena, 255, 147 (2016).

DOI: 10.4028/www.scientific.net/ssp.255.147

Google Scholar

[13] Q. Yuan and Y.-P. Zhao, Sci Rep, 3(1), 1944 (2013).

Google Scholar

[14] D. Bassett and A. Rotondaro, ECS Trans., 80(2), 29 (2017).

Google Scholar

[15] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, Computer Physics Communications, 271, 108171 (2022).

DOI: 10.1016/j.cpc.2021.108171

Google Scholar

[16] F. H. Stillinger and T. A. Weber, Phys. Rev. B, 31(8), 5262 (1985).

Google Scholar

[17] W. Damm, A. Frontera, J. Tirado-Rives, and W. L. Jorgensen, Journal of Computational Chemistry, 18(16), 1955 (1997).

Google Scholar

[18] H. Sun, L. Chen, S. Sun, and T.-Y. Zhang, Sci. China Technol. Sci., 61(5), 687 (2018).

Google Scholar