Growth, Structural and Morphological Properties of Ni80Fe20/ Si (111) Thin Films

Article Preview

Abstract:

Ni80Fe20 thin films have been manufactured onto monocrystalline silicon substrates, utilizing a physical vapor evaporation technique under vacuum. The thickness of these Permalloy films fluctuates between 16 and 45 nm. The structure and morphology of the Permalloy film are studied as a function of the thickness of the deposited magnetic layer. Rutherford’s backscattering spectroscopy technique was used to quantify the samples. X-ray diffraction method has been used to examine the structure, and the atomic force microscope scrutinizes the surface topography and performs the film roughness. These techniques allowed to infer that all the films crystallize in the face-centered cubic structure and exhibit <111> preferred orientation. The size of the crystallites is directly proportional to the thickness of the magnetic layer. The films are under stress and the lattice parameter increases with thickness. The 45 nm thickest film exhibits the roughest topographic surface with root mean square roughness near 2.4 nm, while the 16 nm thinnest film exhibits the smoothest topographic surface, not exceeding 3 Å. These results, and others, will certainly contribute to a better understanding of the physical properties of Permalloy material, and improve their technological applications

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

23-34

Citation:

Online since:

November 2025

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Benhamoud, A. Kharmouche, Synthesis, Structural, and Magnetic Properties of Fe100-xPdx Thin Films, J Supercond Nov Magn 33 (2020)1521–1526.

DOI: 10.1007/s10948-019-05412-1

Google Scholar

[2] A. Melloul, A. Kharmouche, Synthesis, Structure and magnetic properties of CoxFe100–x thin films thermally evaporated onto Si (111) substrate, J Mater Sci: Mater Electron 30 (2019) 13144–13150.

DOI: 10.1007/s10854-019-01677-3

Google Scholar

[3] S.M. Cherif, Y. Roussigné, A. Kharmouche, T. Chauveau, and D. Billet, Effect of grain misorientation on the stripe domains in evaporated cobalt films, Eur. Phys. J. B 45(2005)305–309.

DOI: 10.1140/epjb/e2005-00190-7

Google Scholar

[4] M. Tinouche, A. Kharmouche, B. Aktas¸ F. Yildiz, A. N. Koc¸bay, Magnetic and Structural Properties of Co Thin Films Evaporated on GaAs Substrate, J Supercond Nov Magn 28 (2015)921–925.

DOI: 10.1007/s10948-014-2863-y

Google Scholar

[5] S.Niaz and A.Saidi, Magnetic and chemical properties investigation of Fe–Ni electrodeposited alloy on titanium substrate at the presence of alumina, J Mater Sci: Mater Electron 32 (2021)22013–22023.

DOI: 10.1007/s10854-021-06655-2

Google Scholar

[6] T. Omori, R. Kainuma, T. Sawaguchi, Ferrous Shape Memory Alloys, Encyclopedia of Materials: Metals and Alloys2(2022)214-222.

DOI: 10.1016/B978-0-12-803581-8.12128-9

Google Scholar

[7] V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A. Sabour Rouhaghdam, Electrodeposition of Ni-Fe alloys, composites, and nano coatings, A Review, J. Alloys Compd. 691 (2017) 841.

DOI: 10.1016/j.jallcom.2016.08.329

Google Scholar

[8] A. Kharmouche, S.-M. Chérif, Y. Roussigné, G. Schmerber, Effect of Cr on the magnetic properties of evaporated CoxCr1-x/Si(1 0 0) and CoxCr1-x/glass thin films, Appl. Surf. Sci. 255 (2009) 6173–6178.

DOI: 10.1016/j.apsusc.2009.01.082

Google Scholar

[9] David Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall, Second Edition, CRC Press, NewYork, 1998.

Google Scholar

[10] Yu Liu, Zhongwen Lan, Zhong Yu, Rongdi Guo, Xiaona Jiang, Chuanjian Wu, Ke Sun, Magnetic properties study of spin pinned NiFe/FeMn/NiFe heterogeneous multilayer films with different NiFe thicknesses, Appl. Phys. A 126 (2020)792.

DOI: 10.1007/s00339-020-03833-7

Google Scholar

[11] Pinaki Laha, Bipul Kumar Mahato, Rabindranath Gayen, Subhadeep Datta, Rajdeep Singh Rawat, Magnetization reversal in chemically synthesized chains of permalloy nanospheres, Appl. Phys. A128(2022)394.

DOI: 10.1007/s00339-022-05519-8

Google Scholar

[12] Min Zhang and Chaoyong Deng, Magnetic, optical and electrical properties of permalloy films by DC magnetron sputtering, J Mater Sci: Mater Electron 32 (2021) 4949–4960.

DOI: 10.1007/s10854-020-05234-1

Google Scholar

[13] A. Bourzami, B. Ghebouli, A. Kharmouche, A. Guittoum, A. Layadi, O. Lenoble, The influence of substrate and thickness on the magnetic properties of dc sputtered Ni thin films. European Journal of Control 30(2005)207-215.

DOI: 10.3166/acsm.30.207-215

Google Scholar

[14] Movaffaq Kateb, Hamidreza Hajihoseini, Jon Tomas Gudmundsson and Snorri Ingvarsson, Comparison of magnetic and structural properties of permalloy Ni80Fe20 grown by dc and high-power impulse magnetron sputtering, J. Phys. D: Appl. Phys. 51 (2018) 285005-285013.

DOI: 10.1088/1361-6463/aaca11

Google Scholar

[15] A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures, J.Magn. Magn. Mater. 443(2017)142–148.

DOI: 10.1016/j.jmmm.2017.07.053

Google Scholar

[16] S. Parajuli, K. Javed, M. Irfan, X.M. Zhang, C. Cheng, T. Yu, N. Ahmed, J.F. Feng, X.F. Han, Temperature dependent structural and magnetic properties of permalloy (Ni80Fe20) nanotubes, Jour. Magn. Magn. Mater. 602 (2024) 172204.

DOI: 10.1016/j.jmmm.2024.172204

Google Scholar

[17] W. Hösler, R. Darji, On the nonlinearity of silicon detectors and the energy calibration in RBS, Nucl. Instrum. Methods B85(1994)602.

DOI: 10.1016/0168-583X(94)95890-4

Google Scholar

[18] M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conf. Proc. 475 (1999)541.

DOI: 10.1063/1.59188

Google Scholar

[19] Mikio Kishimoto, Eiji Kita, Hideto Yanagihara, Structure and magnetic properties of nitrides in FeNi and FeNiCo alloy particles synthesized via co-precipitation, reduction, and nitriding, J. Magn. Magn. Mater 548(2022) 168970.

DOI: 10.1016/j.jmmm.2021.168970

Google Scholar

[20] A. Kharmouche, and A. Melloul, Structural and Magnetic Studies of CoxFe100-x Thin Films Thermally Evaporated on Glass, J Mater Sci: Mater Electron 31(2020)19680-19690.

DOI: 10.1007/s10854-020-04494-1

Google Scholar

[21] A. Kharmouche, I. Bensehil, Synthesis, structural and magnetic properties of physical vapor deposited Fe/Si (100) and Fe/Si (111) thin films, J Mater Sci: Mater Electron 30 (2019)631–638.

DOI: 10.1007/s10854-018-0330-4

Google Scholar

[22] B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA (1978).

Google Scholar

[23] J.P. Eberhart, Analyse structurale et chimiques des matériaux, Bordas, Paris, 1989.

Google Scholar

[24] C. Eid, E. Assaf, R. Habchi, P. Miele, M. Bechelany, Tunable properties of GO-doped CoFe2O4 nanofibers elaborated by electrospinning. RSC Adv. 5(2015) 97849–97854.

DOI: 10.1039/C5RA14897A

Google Scholar

[25] A. Van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers, Philips Res. Rep. 22 (1967) 267.

Google Scholar

[26] R.C. Cammarata, T.M. Trimble, and D.J. Srolovic, Surface stress model for intrinsic stresses in thin films. Journal of Materials Research15(2000)2468–2474.

DOI: 10.1557/JMR.2000.0354

Google Scholar

[27] M. Platea, W. Brueckner, H. Wendrock, and R. Kaltofen, Stress evolution during and after sputter deposition of Cu thin films onto Si (100) substrates under various sputtering pressures, J. Appl. Phys. 97(2005) 054908.

DOI: 10.1063/1.1858062

Google Scholar

[28] B.W. Sheldon, A. Rajamani, A. Bhandari, E. Chason, S.K. Hong, and R. Beresford, Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films, J. Appl. Phys. 98(2005)043509.

DOI: 10.1063/1.1994944

Google Scholar

[29] Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976).

Google Scholar

[30] Bragg, W.L. The Crystalline State: Volume I. New York: The Macmillan Company, 1934.

Google Scholar

[31] A. Clearfield, J. Reibenspies and N. Bhuvanesh, Principles and Applications of Powder Diffraction, 2008 Blackwell Publishing Ltd. ISBN: 978-1-405-16222-7.

Google Scholar

[32] R.J. Wakelin & E.L. Yates, Proc. Phys. Soc., London, Sect. B, B66, 221, (1953). ICOD card number 03-065-3244.

Google Scholar

[33] A.V. Svalov, A. Larranaga, G.V. Kurlyandskaya, Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers, J. Mater. Sci. Eng. B 188 (2014) 102–105.

DOI: 10.1016/j.mseb.2014.06.006

Google Scholar

[34] V. Ng, J.F. Hu, A.O. Adeyeye, J. P. Wang and T. C. Chong, Factors affecting surface roughness and coercivity of Ni80Fe20 thin films, J. Appl. Phys. 91(2002)7206.

DOI: 10.1063/1.1450841

Google Scholar