Influence of Two Superthermal Electrons on the Dusty Plasma Sheath with Dynamic Dust Charge

Article Preview

Abstract:

In this paper, the problem of sheath is investigated using the fluid model in a magnetized four-component dusty plasma system comprising positive ions, variable charge of the dust grains and two species of electron populations with two different temperatures, low temperature electrons (LTEs) and high temperature electrons (HTEs). Both electrons are assumed to be a sum of two superthermal electrons which are related at superextensive electrons distribution. The effects of temperature ratio of HTE to LTE superextensive electrons on the plasma sheath parameters are studied numerically. A significant modification is observed in the quantities characterizing the sheath as sheath thickness, sheath potential and dust velocity in the presence of the two groups of superthermal electrons.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

45-51

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bouchoule, dusty plasma: Physics, Chemistry and Technical impact in plasma processing, New York: Wiley (1999).

Google Scholar

[2] P. K. Shukla, A. A. Mamun, Introduction to Dusty Plasma Physics, Institute of Physics Bristol, 2002.

Google Scholar

[3] C. Arnas, M. Mikikian, G. Bachet, F. Doveil, Sheath modification in the presence of dust particles, Phys. Plasmas, 7 (2000) 4418-4422.

DOI: 10.1063/1.1316085

Google Scholar

[4] S. Basnet, A. Patel, S. B. Thapa, R. Khanal, Ion flow and dust charging at the sheath boundary in dusty plasma with an electron-emitting surface: applications to laboratory and lunar dusty plasmas, Plasma Phys. Control Fusion, 66.5 (2024) 055013.

DOI: 10.1088/1361-6587/ad34f9

Google Scholar

[5] J. Y. Liu, Q. Zhang, X. Zou, Z. X. Wang, Y. Liu, X. G. Wang, Y. Gong, The characteristic of dust in a magnetic plasma sheath, Vacuum, 73.3-4 (2004) 687-690.

DOI: 10.1016/j.vacuum.2003.12.092

Google Scholar

[6] K. Devi, A. Nag, J. Paul, P. K. Karmakar, Dynamics of sheath evolution in magnetized charge-fluctuating dusty plasmas, Chinese Journal of Physics, 65 (2020) 405-411.

DOI: 10.1016/j.cjph.2020.02.028

Google Scholar

[7] S. F. Masoudi, G. R. Jafari, H. A. Shorakaee, Effect of dust–neutral collisions on the dust characteristics in a magnetized plasma sheath, Vacuum, 83.7 (2009) 1031-1035.

DOI: 10.1016/j.vacuum.2009.02.003

Google Scholar

[8] W. M. Moslem, W. F. El_Taibany, E. K. El_Shewy, and E. F. El_Shamy, Dust-ion-acoustic solitons with transverse perturbation, Phys. Plasmas 12 (2005) 052318.

DOI: 10.1063/1.1897716

Google Scholar

[9] J. Du, Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions, Phys. Lett. A, 329 (2004) 262.

DOI: 10.1016/j.physleta.2004.07.010

Google Scholar

[10] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52 (1988) 479-487.

DOI: 10.1007/bf01016429

Google Scholar

[11] M.M. Hatami, Nonextensive statistics and the sheath criterion in collisional plasmas, Phys. Plasmas, 22.1 (2015).

DOI: 10.1063/1.4906355

Google Scholar

[12] D. Xiao, X. Chen, S. Liu, H. Chen, Y. Xiong, Development of the Langmuir probe under q-distribution for NCST, AIP Advances, 14.1 (2024).

DOI: 10.1063/5.0186389

Google Scholar

[13] X. Zhao, B. Zhang, C. Wang, Dust charging and levitating in a magnetized plasma sheath containing superextensive electrons, Phys. Plasmas, 27.11 (2024).

DOI: 10.1063/5.0018339

Google Scholar

[14] Z. Eljabiri, O. El_Ghani, I. Driouch, H. Chatei, Total secondary emission effect on the complex plasma sheath with superextensive electrons, J. Plasma Phys, 90.5 (2024) 905900506.

DOI: 10.1017/s0022377824001193

Google Scholar

[15] S. Basnet, R. Khanal, Magnetized plasma sheath properties in the presence of Maxwellian low-temperature and non-Maxwellian high-temperature electrons, Phys. Plasmas 26 (2019) 043516.

DOI: 10.1063/1.5087437

Google Scholar

[16] R. Dhawan, M. Kumar et H. K. Malik, Influence of ionization on sheath structure in electropositive warm plasma carrying two-temperature electrons with non-extensive distribution, Phys. Plasmas, 27.6 (2020).

DOI: 10.1063/5.0003242

Google Scholar

[17] M. Kaur, K. Singh, N. S. Saini, Solitary and Shock Structures in Two Temperature Magnetized Plasma, in International Conference on Nonlinear Dynamics and Applications. Cham: Springer Nature Switzerland, (2024), pp.537-546.

DOI: 10.1007/978-3-031-66874-6_43

Google Scholar

[18] R. Dhawan, M. Malik et H. K. Malik, Modified Bohm's criterion in a collisional electronegative plasma having two-temperature non-extensive electrons, Journal of Theoretical and Applied Physics, 16.4 (2022) 1-8.

DOI: 10.1063/5.0120616

Google Scholar

[19] G. Sharma, R. Paul, K. Deka, R. Moulick, S. Adhikari, S. S. Kausik et B. K. Saikia, Study of two-electron temperature plasma sheath using nonextensive electron distribution in presence of an external magnetic field, AIP Advances, 13.1 (2023).

DOI: 10.1063/5.0128420

Google Scholar

[20] O. El Ghani, I. Driouch, H. Chatei, Effects of Two Temperature Non-Extensive Electrons on the Sheath of Dusty Plasma, MATPR (2019).

DOI: 10.1016/j.matpr.2019.07.599

Google Scholar

[21] J. A. S. Lima, Jr. R. Silva, J. Santos, Plasma oscillations and nonextensive statistics, Phys. Rev. E 61.3 (2000) 3260.

DOI: 10.1103/physreve.61.3260

Google Scholar

[22] W. D. Jones, A. Lee, S. M. Gleman, H. J. Doucett, Propagation of Ion-Acoustic Waves in a Two-Electron-Temperature Plasma. Phys. Rev. Lett., 35.20 (1975) 1349.

DOI: 10.1103/physrevlett.35.1349

Google Scholar

[23] J. A. S. Lima, R. Silva, J. Plastino, Jeans' gravitational instability and nonextensive kinetic theory, Astron. Astrophys. 396.1 (2002) 309-313.

DOI: 10.1051/0004-6361:20021395

Google Scholar

[24] J. Gong, Z. Liu, J. Du Dust-acoustic waves and stability in the permeating dusty plasma: II. Power-law distributions, Phys. Plasmas, 19.8 (2012) 023704.

DOI: 10.1063/1.4748297

Google Scholar