Reconfiguration of a Metallic Dipole Antenna Using Plasma Parabolic Reflectors

Article Preview

Abstract:

This work investigates the radiation pattern of a 5 GHz antenna composed of a metal dipole antenna and surrounded by fluorescent tubes which act as reflectors (plasma medium). The study emphasizes the role of plasma reflectors in improving the antenna’s efficiency by controlling the radiation pattern. The electrical parameters of the plasma medium are modeled by Drude model in Comsol Multyphysics for different voltage discharges. Also, a CST software is used to simulate metallic dipole antenna reconfigurability. The results show that the plasma can be used as a good reflector when its permittivity is negative () and . Moreover, it is shown that with increasing the discharge voltage, the plasma reflectivity increases, this is because the gain increases and the directivity of the antenna considerably changes. Keywords: Reflector, Plasma, COMSOL, CST, Gain, Directivity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

53-62

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BALANIS, Constantine A. Antenna theory: analysis and design. John wiley & sons, 2015.

Google Scholar

[2] ALEXEFF, Igor, ANDERSON, Ted, FARSHI, Esmaeil, et al. Recent results for plasma antennas. Physics of Plasmas, 2008, vol. 15, no 5.

DOI: 10.1063/1.2919157

Google Scholar

[3] RAHMAT-SAMII, Yahya et HAUPT, Randy. Reflector antenna developments: a perspective on the past, present and future. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no 2, pp.85-95. https://doi.org /.

DOI: 10.1109/MAP.2015.2414534

Google Scholar

[4] TSUGAWA, Sadayuki, JESCHKE, Sabina, et SHLADOVER, Steven E. A review of truck platooning projects for energy savings. IEEE Transactions on Intelligent Vehicles, 2016, vol. 1, no 1, pp.68-77.

DOI: 10.1109/TIV.2016.2577499

Google Scholar

[5] STUTZMAN, Warren L. et THIELE, Gary A. Antenna theory and design. John Wiley & Sons, 2012.

Google Scholar

[6] WANG, Hailu, LYU, Xingbao, YAO, Jingfeng, et al. Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems. Electronics, 2023, vol. 12, no 6, p.1277.

DOI: 10.3390/electronics12061277

Google Scholar

[7] JUSOH, Mohd Taufik, AHMAD, Khairol Amali, DIN, Muhammad Faiz Md, et al. Reconfigurable antenna using plasma reflector. In: AIP Conference Proceedings. AIP Publishing, 2018.

DOI: 10.1063/1.5022923

Google Scholar

[8] BOGAERTS, Annemie, NEYTS, Erik, GIJBELS, Renaat, et al. Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, vol. 57, no 4, pp.609-658.

DOI: 10.1016/S0584-8547(01)00406-2

Google Scholar

[9] CONRADS, H. et SCHMIDT, M. Plasma generation and plasma sources. Plasma sources science and technology, 2000, vol. 9, no 4, p.441. https://.

DOI: 10.1088/0963-0252/9/4/301

Google Scholar

[10] MOISAN, M., SHIVAROVA, A., et TRIVELPIECE, A. W. Experimental investigations of the propagation of surface waves along a plasma column. Plasma physics, 1982, vol. 24, no 11, p.1331.

DOI: 10.1088/0032-1028/24/11/001

Google Scholar

[11] SHARMA, Sarveshwar, KAGANOVICH, Igor D., KHRABROV, Alexander V., et al. Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field. Physics of Plasmas, 2018, vol. 25, no 8.

DOI: 10.1063/1.5033350

Google Scholar

[12] TAREQ, Mohammad, ALAM, D. Ashraful, ISLAM, Mazidul, et al. Simple half-wave dipole antenna analysis for wireless applications by CST microwave studio. International Journal of Computer Applications, 2014, vol. 94, no 7, pp.21-23.

DOI: 10.5120/16355-5734

Google Scholar

[13] MELAZZI, Davide, DE CARLO, Paola, TREZZOLANI, Fabio, et al. Beam‐forming capabilities of a plasma circular reflector antenna. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no 15, pp.2301-2306.

DOI: 10.1049/iet-map.2018.5178

Google Scholar

[14] WANG, Ying, YUAN, Chengxun, ZHOU, Zhongxiang, et al. Propagation of Gaussian laser beam in cold plasma of Drude model. Physics of Plasmas, 2011, vol. 18, no 11.

DOI: 10.1063/1.3662433

Google Scholar

[15] TONKS, Lewi. Oscillations in ionized gases. In: Plasma and Oscillations. Pergamon, 1961. pp.122-139.

DOI: 10.1016/B978-1-4831-9913-9.50014-5

Google Scholar

[16] EL JAOUHARI, Ayoub, ROCHDI, Majid, EL KAOUINI, Morad, et al. Effect of discharge parameters on conductive behavior and characteristics of monopole plasma antenna. Materials Today: Proceedings, 2023, vol. 72, pp.3863-3868.

DOI: 10.1016/j.matpr.2022.10.072

Google Scholar

[17] BOLSIG, Boltzmann Solver for the SIGLO Series 1.0 ~CPA Toulouse Kinema Software, 1996.

Google Scholar

[18] RAIZER, Yuri P. et ALLEN, John E. Gas discharge physics. Berlin: Springer, 1997.

Google Scholar

[19] ANDERSON, Theodore. Plasma antennas. Artech House, 2020.

Google Scholar