Synthesis and Silica Coating of Nickel-Platinum Composite Nanoparticles

Article Preview

Abstract:

Ni and Ni-containing nanoparticles exhibit promising magnetic properties. In a preliminary experiment, these nanoparticles aggregated after synthesis. Because nanoparticle aggregation may degrade their unique properties, a method to prevent their aggregation is required. In this study, Ni-Pt nanoparticles were synthesized and coated with silica to suppress aggregation. A colloidal solution of Ni-Pt nanoparticles was synthesized in water exposed to air using nickel(II) acetate tetrahydrate (Ni source), hexachloroplatinate(IV) hexahydrate (Pt source), sodium borohydride (reducing agent), and citric acid (stabilizer). Silica-coated Ni-Pt nanoparticles (Ni-Pt/SiO2) were synthesized by adding a tetraethylorthosilicate (TEOS)/ethanol solution to the colloidal Ni-Pt nanoparticle solution. The morphology of the Ni-Pt nanoparticles varied with reaction time. The Ni-Pt/SiO2 nanoparticles consisted of Ni-Pt cores and SiO2 shells, with their morphology dependent on the TEOS concentration. Furthermore, the Ni-Pt/SiO2 nanoparticles were more dispersed than the uncoated Ni-Pt nanoparticles, suggesting that the silica coating suppressed aggregation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

13-21

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.P.A. Guerrero-Ortega, A. Manzo-Robledo, E. Ramírez-Meneses, J. Mateos- Santiago, L. Lartundo-Rojas, and V. Garibay-Febles, International Journal of Hydrogen Energy, 43 (12) (2018) 6117–6130.

DOI: 10.1016/j.ijhydene.2018.02.003

Google Scholar

[2] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic, Science, 315 (5811) (2007) 493–497.

Google Scholar

[3] Y. Wang, L. Zou, Q. Huang, Z. Zou, and H. Yang, International Journal of Hydrogen Energy, 42 (43) (2017) 26695–26703.

DOI: 10.1016/j.ijhydene.2017.09.008

Google Scholar

[4] L. Chen, J. Zhu, J. Wang, W. Xiao, W. Lei, T. Zhao, T. Huang, Y. Zhu, and D. Wang, Electrochimica Acta, 283 (2018) 1253–1260.

DOI: 10.1016/j.electacta.2018.07.016

Google Scholar

[5] E. Antolini, International Journal of Energy Research, 42 (12) (2018) 3747–3769.

Google Scholar

[6] S.S.A. Razee, J.B. Staunton, F.J. Pinski, B. Ginatempo, E. Bruno, Journal of Applied Physics, 83, (11) (1998) 7097–7099.

DOI: 10.1063/1.367696

Google Scholar

[7] Jia-Hao Li , Hui-Yue Zhang, Quan-Wei Shi, Jie Ying, and Christoph Janiak, Progress in Materials Science, 146 (101335) (2024).

Google Scholar

[8] Fiona W.M. Ling, Hayder A. Abdulbari, and Chin Sim-Yee, Materials Today: Proceedings, 42 (2021) 1–7.

Google Scholar

[9] Yaling Wu, Xiaotong Sun, Junchen Zhu, Jiawei Shen, Huiying Wang, Lunan Zhu, Yang Zhou, and Yanxiong Ke, Journal of Chromatography A, 1625 (461282) (2020).

Google Scholar

[10] Xianfa Jiang, Xiaoning Tang, Lihong Tang, Bin Zhang, and Huaming Mao, Ceramics International, 45 (6) (2019) 7673–7680.

Google Scholar

[11] Kyung Soo Park, Jae Hyeon Kwon, Ji Su Yu, So Yun Jeong, Dong Hyun Jo, Chan-Hwa Chung, Jong Wook Bae, Journal of CO2 Utilization, 60 (101984) (2022).

Google Scholar

[12] Yan Li, Xiao Li Zhang, Ri Qiu, Ru Qiao, and Young Soo Kang, The Journal of Physical Chemistry C, 111 (29) (2007) 10747–10750.

Google Scholar

[13] Won-Yeop Rho, Hyung-Mo Kim, San Kyeong, Yoo-Lee Kang, Dong-Hyuk Kim, Homan Kang, Cheolhwan Jeong, Dong-Eun Kim, Yoon-Sik Lee, and Bong-Hyun Jun, Journal of Industrial and Engineering Chemistry, 20 (5) (2014) 2646–2649.

DOI: 10.1016/j.jiec.2013.12.014

Google Scholar

[14] Pavel Veverka, Lenka Kubíčková, Zdeněk Jirák, Vít Herynek, Miroslav Veverka, and Ondřej Kaman, Materials Chemistry and Physics, 260 (124178) (2021).

DOI: 10.1016/j.matchemphys.2020.124178

Google Scholar

[15] Pham Hoai Linh, Julia Fedotova, Svetlana Vorobyova, Luu Huu Nguyen, Tran Thi Huong, Hong Nhung Nguyen, Thi Ngoc Anh Nguyen, Anh Son Hoang, Quang Anh Nguyen, Uladzislaw Gumiennik, Artem Konakov, Maxim Bushinskij, Pawel Zukowski, and Tomasz N. Koltunowicz, Materials Science & Engineering B, 295, (116571) (2023).

DOI: 10.1016/j.mseb.2023.116571

Google Scholar

[16] Yousaf Iqbal, Waqar Hussain Shah, Muhammad Yaqoob Khan, Pervaiz Ahmed, Muhammad Tauseef Qureshi, Azza Mohamed Khaled, and Marwa Syed Salem, Inorganic Chemistry Communications, 167 (112796) (2024).

DOI: 10.1016/j.inoche.2024.112796

Google Scholar

[17] Heera Jayan, Da-Wen Sun, Hongbin Pu, and Qingyi Wei, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 284 (121817) (2023).

DOI: 10.1016/j.saa.2022.121817

Google Scholar

[18] Aritra Biswas, Nir Lemcoff, and Yossi Weizmann, Accounts of Chemical Research, 58 (9) (2025)1424–1434.

Google Scholar

[19] Oleg Dimitriev, Yuri Slominskii, Mariangela Giancaspro, Federica Rizzi, Nicoletta Depalo, Elisabetta Fanizza and Tsukasa Yoshida, Nanomaterials, 13 (3) (2023) 510.

DOI: 10.3390/nano13030510

Google Scholar

[20] Jong-Gil Oh and Hansung Kim, Current Applied Physics, 13 (1) (2013) 130–136.

Google Scholar

[21] Airi Tago, Masato Yanase, Noriko Yamauchi, Kouichi Nakashima, Daisuke Nagao, and Yoshio Kobayashi, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629 (127524) (2021).

DOI: 10.1016/j.colsurfa.2021.127524

Google Scholar

[22] Yukina Kobayashi, Michi Nagatsuka, Keisuke Akino, Noriko Yamauchi, Kouichi Nakashima, Tomoya Inose, Chihiro Nishidate, Keisuke Sato, Kohsuke Gonda, and Yoshio Kobayashi, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643 (128773) (2022).

DOI: 10.1016/j.colsurfa.2022.128773

Google Scholar

[23] Yoshio Kobayashi, Mitsuru Horie, Daisuke Nagao, Yasuo Ando, Terunobu Miyazaki, and Mikio Konno, Materials Letters, 60 (16) (2006) 2046–2049.

DOI: 10.1016/j.matlet.2005.12.078

Google Scholar

[24] Takeru Sakamoto, Noriko Yamauchi, Shohei Tada, Takumu Takase, Mone Kimura, Chihiro Nishidate, Kohsuke Gonda, and Yoshio Kobayashi, Journal of Nanoparticle Research, 25 (67) (2023).

Google Scholar

[25] Kenzo Nakano, Chemistry Letters, 45 (2) (2016) 131–133.

Google Scholar

[26] Jung Woo Park, Eun H. Chae, Sang H. Kim, Jong Ho Lee, Jeong Wook Kim, Seon Mi Yoon, and Jae-Young Choi, Materials Chemistry and Physics, 97, (2–3) (2006) 371–378.

DOI: 10.1177/17534666231162244/v2/response1

Google Scholar

[27] Allen J. Bard and Larry R. Faulkner, John Wiley & Sons, Inc., 809 (2001).

Google Scholar

[28] Anton A. Popov, Andrey D. Varygin, Pavel E. Plyusnin, Marat R. Sharafutdinov, Sergey V. Korenev, Alexandra N. Serkova, and Yury V. Shubin, Journal of Alloys and Compounds, 891 (161974) (2021).

DOI: 10.1016/j.jallcom.2021.161974

Google Scholar

[29] Tian-Wei Song, Cong Xu, Zhu-Tao Sheng, Hui-Kun Yan, Lei Tong, Jun Liu, Wei-Jie Zeng, Lu-Jie Zuo, PengYin, Ming Zuo, Sheng-Qi Chu, Ping Chen, and Hai-Wei Liang, Nature Communications, 13 (6521) (2022).

DOI: 10.1038/s41467-022-34037-7

Google Scholar

[30] Phan Khanh Linh Tran, Thanh Hai Nguyen, Duy Thanh Tran, Van An Dinh, Thi Thuy Nga Ta, Chung-Li Dong, Nam Hoon Kim, and Joong Hee Lee, Applied Catalysis B: Environment and Energy, 363 (124801) (2025).

DOI: 10.1016/j.apcatb.2024.124801

Google Scholar

[31] Amir Bahrami, Iraj Kazeminezhad, and Yaser Abdi, Superlattices and Microstructures, 125 (2019) 125–137.

DOI: 10.1016/j.spmi.2018.10.026

Google Scholar