Magnetized Plasma Sheath Formation Criterion and Floating Electric Potential in the Presence of Non-Extensive Electrons and Ionization Source

Article Preview

Abstract:

In this paper, we have developed a numerical model of a magnetized plasma sheath comprising positive ions, electrons and neutral particles. The electrons are considered, following a non-extensive distribution based on Tsallis statistics, while the ions are described using a fluid approach taking into account the ion source term. Using the Sagdeev potential method, the sheath formation criterion was established. Also, the floating electric potential was determined. The obtained results show a significant effect of ionization frequency and magnetic field orientation on the modified Bohm velocity as well as the floating electric potential. It is also shown that the floating potential is considerably affected by the super extensive electrons (q<1).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

63-70

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. U.S.A, 14(8) (1928) 627.

DOI: 10.1073/pnas.14.8.627

Google Scholar

[2] M. El Kaouini, H. Chatei, I. Driouch, M. El Hammouti, Ion Temperature Effect on Bohm Criterion for Magnetized Plasma Sheath, J. Fusion Energy, 30 (2011) 199.

DOI: 10.1007/s10894-010-9358-z

Google Scholar

[3] M. El Kaouini, H. Chatei, Combined Effect of Ion Temperature and Magnetic Field on Collisionless Sheath Structure, J. Fusion Energy, 31 (2012) 317.

DOI: 10.1007/s10894-011-9486-0

Google Scholar

[4] N. Navab Safa, H. Ghomi, A. R. Niknam, Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath, Phys. Plasmas, 21 (2014) 082111.

DOI: 10.1063/1.4892966

Google Scholar

[5] I. Driouch, H. Chatei, M. El Bojaddaini, Numerical study of the sheath in magnetized dusty plasma with two-temperature electrons, J. Plasma Phys, 81 (2015) 905810104.

DOI: 10.1017/s0022377814000403

Google Scholar

[6] M.M. Hatami, Nonextensive statistics and the sheath criterion in collisional plasmas, Phys. Plasmas, 22 (2015) 013508.

DOI: 10.1063/1.4906355

Google Scholar

[7] I. Driouch, H. Chatei, Effect of q-nonextensive distribution of electrons on the sheath in dusty plasma, Eur. Phys. J. D, 71 (2017) 9.

DOI: 10.1140/epjd/e2016-70111-0

Google Scholar

[8] A. Arghand-Hesar, A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, Effects of a monoenergetic electron beam on the sheath formation in a plasma with a q-nonextensive electron velocity distribution, Phys. Plasmas, 24 (2017) 063504.

DOI: 10.1063/1.4984785

Google Scholar

[9] M.M. Hatami, M. Tribeche, Sheath Properties in Two-Temperature Non-Maxwellian Electron Plasmas, IEEE Trans. Plasma Sci, 46 (2018) 868.

DOI: 10.1109/tps.2018.2805678

Google Scholar

[10] A. Asserghine, M. El Kaouini, H. Chatei, Investigation of magnetized plasma sheath in the presence of q-nonextensive electrons and negative ions, Mater. Today Proc, 24 (2020) 24.

DOI: 10.1016/j.matpr.2019.07.439

Google Scholar

[11] T. Gyergyek, J. Kovačič, Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects, Phys. Plasmas, 22 (2015) 043502.

DOI: 10.1063/1.4916318

Google Scholar

[12] R. Moulick, S. Adhikari, K. S. Goswami, Sheath formation in collisional, low pressure, and magnetized plasma, Phys. Plasmas, 26 (2019) 043512.

DOI: 10.1063/1.5090537

Google Scholar

[13] R. Moulick, S. Adhikari, K. S. Goswami, Criterion of sheath formation in magnetized low-pressure plasma, Phys. Plasmas, 24 (2017) 114501.

DOI: 10.1063/1.4994261

Google Scholar

[14] D.R. Borgohain, K. Saharia, Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution, Plasma Phys. Rep, 44 (2018) 137.

DOI: 10.1134/s1063780x1801004x

Google Scholar

[15] T. Constantino, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487.

DOI: 10.1007/bf01016429

Google Scholar

[16] A.R. Plastino, A. Plastino, C. Tsallis, The classical N-body problem within a generalized statistical mechanics, J. Phys. A, 27 (1994) 5707.

DOI: 10.1088/0305-4470/27/17/008

Google Scholar

[17] S. Basnet, R. R. Pokhrel, R. Khanal, Characteristics of magnetized dusty plasma sheath with two ion species and q-nonextensive electrons, IEEE Trans. Plasma Sci. 49 (2021) 1268-1277.

DOI: 10.1109/tps.2021.3066888

Google Scholar

[18] R. Dhawan, M. Kumar, H. K. Malik, Influence of ionization on sheath structure in electropositive warm plasma carrying two-temperature electrons with non-extensive distribution, Phys. Plasmas 27 (2020) 062111.

DOI: 10.1063/5.0003242

Google Scholar

[19] L. Chen, Y. An, C. Tan, P. Duan, Z. Cui, J. Chen, L. Zhou, Properties of collisional plasma sheath with ionization source term and two-temperature electrons in an oblique magnetic field, J. Phys. D Appl. Phys. 57 (2024) 285204.

DOI: 10.1088/1361-6463/ad32ed

Google Scholar

[20] R. Dhawan, M. Malik, H. K. Malik, Modified Bohm's criterion in a collisional electronegative plasma having two-temperature non-extensive electrons, J. Theor. Appl. Phys, 16(4)(2022)1-8.

DOI: 10.1063/5.0120616

Google Scholar

[21] M. El Bojaddaini, M. El Kaouini, H. Chatei, Sheath structure behavior in collisional non-extensive plasma with negative ions, Eur. Phys. J. Plus 139 (2024) 1-11.

DOI: 10.1140/epjp/s13360-024-05112-3

Google Scholar

[22] N.P. Acharya, S. Basnet, R. Khanal, Bohm sheath criterion and dust charging for active magnetized plasma in the presence of q-nonextensive electron distribution, AIP Adv. 13 (2023).

DOI: 10.1063/5.0167679

Google Scholar

[23] Z.O. Xiu, H. Liu, Y. Zhu, X. Zhang, M. Qiu, The structure of an electronegative magnetized plasma sheath with non-extensive electron distribution, Plasma Sci. Technol. 22 (2020) 125001.

DOI: 10.1088/2058-6272/abb3dc

Google Scholar

[24] R. Paul, K. Deka, G. Sharma, R. Moulick, S. Adhikari, S. S. Kausik, B. K. Saikia, Study of a collisionless magnetized plasma sheath with nonextensively distributed species, Plasma Sci. Technol. 25 (2023) 125001.

DOI: 10.1088/2058-6272/ace1d4

Google Scholar

[25] Z. Eljabiri, O. El Ghani, I. Driouch, H. Chatei, Total secondary emission effect on the complex plasma sheath with superextensive electrons, J. Plasma Phys. 90(5) (2024) 905900506.

DOI: 10.1017/s0022377824001193

Google Scholar

[26] M. El Bojaddaini, H. Chatei, Study of sheath properties in collisional plasma consisting of non-extensive electrons and thermal ions, Mater. Today Proc, 24 (2020) 37.

DOI: 10.1016/j.matpr.2019.07.441

Google Scholar

[27] M. El Bojaddaini, H. Chatei, Ion source terms effect on collisional plasma sheath characteristics with non-extensively distributed electrons, Eur. Phys. J. Plus, 135 (2020) 680.

DOI: 10.1140/epjp/s13360-020-00699-9

Google Scholar

[28] L. Chen, Y. Yang, Y. An, P. Duan, S. Sun, Z. Cui, Z. Kan, W. Gao, Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source, Plasma Sci. Technol, 25 (2023) 035003.

DOI: 10.1088/2058-6272/aca502

Google Scholar