[1]
I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. U.S.A, 14(8) (1928) 627.
DOI: 10.1073/pnas.14.8.627
Google Scholar
[2]
M. El Kaouini, H. Chatei, I. Driouch, M. El Hammouti, Ion Temperature Effect on Bohm Criterion for Magnetized Plasma Sheath, J. Fusion Energy, 30 (2011) 199.
DOI: 10.1007/s10894-010-9358-z
Google Scholar
[3]
M. El Kaouini, H. Chatei, Combined Effect of Ion Temperature and Magnetic Field on Collisionless Sheath Structure, J. Fusion Energy, 31 (2012) 317.
DOI: 10.1007/s10894-011-9486-0
Google Scholar
[4]
N. Navab Safa, H. Ghomi, A. R. Niknam, Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath, Phys. Plasmas, 21 (2014) 082111.
DOI: 10.1063/1.4892966
Google Scholar
[5]
I. Driouch, H. Chatei, M. El Bojaddaini, Numerical study of the sheath in magnetized dusty plasma with two-temperature electrons, J. Plasma Phys, 81 (2015) 905810104.
DOI: 10.1017/s0022377814000403
Google Scholar
[6]
M.M. Hatami, Nonextensive statistics and the sheath criterion in collisional plasmas, Phys. Plasmas, 22 (2015) 013508.
DOI: 10.1063/1.4906355
Google Scholar
[7]
I. Driouch, H. Chatei, Effect of q-nonextensive distribution of electrons on the sheath in dusty plasma, Eur. Phys. J. D, 71 (2017) 9.
DOI: 10.1140/epjd/e2016-70111-0
Google Scholar
[8]
A. Arghand-Hesar, A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, Effects of a monoenergetic electron beam on the sheath formation in a plasma with a q-nonextensive electron velocity distribution, Phys. Plasmas, 24 (2017) 063504.
DOI: 10.1063/1.4984785
Google Scholar
[9]
M.M. Hatami, M. Tribeche, Sheath Properties in Two-Temperature Non-Maxwellian Electron Plasmas, IEEE Trans. Plasma Sci, 46 (2018) 868.
DOI: 10.1109/tps.2018.2805678
Google Scholar
[10]
A. Asserghine, M. El Kaouini, H. Chatei, Investigation of magnetized plasma sheath in the presence of q-nonextensive electrons and negative ions, Mater. Today Proc, 24 (2020) 24.
DOI: 10.1016/j.matpr.2019.07.439
Google Scholar
[11]
T. Gyergyek, J. Kovačič, Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects, Phys. Plasmas, 22 (2015) 043502.
DOI: 10.1063/1.4916318
Google Scholar
[12]
R. Moulick, S. Adhikari, K. S. Goswami, Sheath formation in collisional, low pressure, and magnetized plasma, Phys. Plasmas, 26 (2019) 043512.
DOI: 10.1063/1.5090537
Google Scholar
[13]
R. Moulick, S. Adhikari, K. S. Goswami, Criterion of sheath formation in magnetized low-pressure plasma, Phys. Plasmas, 24 (2017) 114501.
DOI: 10.1063/1.4994261
Google Scholar
[14]
D.R. Borgohain, K. Saharia, Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution, Plasma Phys. Rep, 44 (2018) 137.
DOI: 10.1134/s1063780x1801004x
Google Scholar
[15]
T. Constantino, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487.
DOI: 10.1007/bf01016429
Google Scholar
[16]
A.R. Plastino, A. Plastino, C. Tsallis, The classical N-body problem within a generalized statistical mechanics, J. Phys. A, 27 (1994) 5707.
DOI: 10.1088/0305-4470/27/17/008
Google Scholar
[17]
S. Basnet, R. R. Pokhrel, R. Khanal, Characteristics of magnetized dusty plasma sheath with two ion species and q-nonextensive electrons, IEEE Trans. Plasma Sci. 49 (2021) 1268-1277.
DOI: 10.1109/tps.2021.3066888
Google Scholar
[18]
R. Dhawan, M. Kumar, H. K. Malik, Influence of ionization on sheath structure in electropositive warm plasma carrying two-temperature electrons with non-extensive distribution, Phys. Plasmas 27 (2020) 062111.
DOI: 10.1063/5.0003242
Google Scholar
[19]
L. Chen, Y. An, C. Tan, P. Duan, Z. Cui, J. Chen, L. Zhou, Properties of collisional plasma sheath with ionization source term and two-temperature electrons in an oblique magnetic field, J. Phys. D Appl. Phys. 57 (2024) 285204.
DOI: 10.1088/1361-6463/ad32ed
Google Scholar
[20]
R. Dhawan, M. Malik, H. K. Malik, Modified Bohm's criterion in a collisional electronegative plasma having two-temperature non-extensive electrons, J. Theor. Appl. Phys, 16(4)(2022)1-8.
DOI: 10.1063/5.0120616
Google Scholar
[21]
M. El Bojaddaini, M. El Kaouini, H. Chatei, Sheath structure behavior in collisional non-extensive plasma with negative ions, Eur. Phys. J. Plus 139 (2024) 1-11.
DOI: 10.1140/epjp/s13360-024-05112-3
Google Scholar
[22]
N.P. Acharya, S. Basnet, R. Khanal, Bohm sheath criterion and dust charging for active magnetized plasma in the presence of q-nonextensive electron distribution, AIP Adv. 13 (2023).
DOI: 10.1063/5.0167679
Google Scholar
[23]
Z.O. Xiu, H. Liu, Y. Zhu, X. Zhang, M. Qiu, The structure of an electronegative magnetized plasma sheath with non-extensive electron distribution, Plasma Sci. Technol. 22 (2020) 125001.
DOI: 10.1088/2058-6272/abb3dc
Google Scholar
[24]
R. Paul, K. Deka, G. Sharma, R. Moulick, S. Adhikari, S. S. Kausik, B. K. Saikia, Study of a collisionless magnetized plasma sheath with nonextensively distributed species, Plasma Sci. Technol. 25 (2023) 125001.
DOI: 10.1088/2058-6272/ace1d4
Google Scholar
[25]
Z. Eljabiri, O. El Ghani, I. Driouch, H. Chatei, Total secondary emission effect on the complex plasma sheath with superextensive electrons, J. Plasma Phys. 90(5) (2024) 905900506.
DOI: 10.1017/s0022377824001193
Google Scholar
[26]
M. El Bojaddaini, H. Chatei, Study of sheath properties in collisional plasma consisting of non-extensive electrons and thermal ions, Mater. Today Proc, 24 (2020) 37.
DOI: 10.1016/j.matpr.2019.07.441
Google Scholar
[27]
M. El Bojaddaini, H. Chatei, Ion source terms effect on collisional plasma sheath characteristics with non-extensively distributed electrons, Eur. Phys. J. Plus, 135 (2020) 680.
DOI: 10.1140/epjp/s13360-020-00699-9
Google Scholar
[28]
L. Chen, Y. Yang, Y. An, P. Duan, S. Sun, Z. Cui, Z. Kan, W. Gao, Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source, Plasma Sci. Technol, 25 (2023) 035003.
DOI: 10.1088/2058-6272/aca502
Google Scholar