Calculation of Cross-Laminated Timber Panels Using the Theory of Composite Rods and Rod Approximation

Article Preview

Abstract:

The article proposes a methodology for calculating CLT panels as composite beams. This approach allows for the analysis of panels with any number of layers. It is shown that, unlike existing approaches, the behavior of the panel is considered in two directions, rather than as a beam system. Initially, the stiffness characteristics of the panel are determined in each direction, taking shear into account. Then, the slab is analyzed as an orthotropic plate with different stiffness characteristics in mutually perpendicular directions. This calculation is performed either as an orthotropic solid plate or as a cross-laminated beam system. To determine the stiffness characteristics in each direction while considering the shear of the cross-layer boards, the theory of composite beams is used. Taking into account the boundary conditions, the system of differential equations is reduced to a system of algebraic equations by expanding the unknowns and external load in Fourier series.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 380)

Pages:

97-106

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Aicher, Bemessung biegebeanspruchter Sandwichbalken mit dem modifizierten γ-Verfahren In: Bautechnik, 03 (1987) 79-86.

Google Scholar

[2] H. Blass, P. Fellmoser, Design of solid wood panels with cross layers. Proceedings of the 8th World Conference on Timber Engineering (Lahti, Finland), (2004) 1001-1006.

Google Scholar

[3] H.J. Blass, R. Görlacher, Rolling shear in structural bonded timber elements. Proc. Int. Conf. on Wood and Wood fiber Composites. Stuttgart, Germany, (2000) 327-337.

Google Scholar

[4] HJ. Blaß, M. Flaig, Shear strength and shear stiffness of CLT-beams loaded in plane. In Proceedings. CIB-W18 Meeting 46, Vancouver, Canada, (2013).

Google Scholar

[5] T. Bogensperger, T. Moosbrugger and G. Schickhofer, "New Test Configuration for CLT-Wall-Elements under Shear Load." CIB W-18, Bled, Slovenia, (2007).

Google Scholar

[6] T. Bogensperger, M. Augustin, G. Schickhofer, Properties of CLT-Panels Exposed to Compression Perpendicular to their Plane, CIB-W18, 44-12-1, Alghero, (2011).

Google Scholar

[7] M. Flaig, H.J. Blaß, Shear Strength and Shear Stiffness of CLT-beams Loaded in Plane. CIB W-18, Bath, Vancouver, Canada, (2013).

Google Scholar

[8] M. Flaig, Design of CLT beams with large finger joints at different angles. 2nd INTER Meeting, Sibenik, Croatia, (2015).

Google Scholar

[9] H. Kreuzinger, M. Sieder, Einfaches Prüfverfahren zur Bewertung der Schubfestigkeit von Kreuzlagenholz / Brettsperrholz (in German). Bautechnik, 90(5) (2013) 314–316.

DOI: 10.1002/bate.201300024

Google Scholar

[10] T. Moosbrugger, F. Neumüller, A. Neumüller, Schwinden und Quellen von orthogonal verklebten Holzprodukten – Teil 1: Globales Schwindverhalten von Blockbohlen und Brettsperrhölzern. In: Holztechnologie, 58 (2017) 5, IHD, Dresden.

Google Scholar

[11] K. Möhler, Stress perpendicular to grain», CIB-W18 / 11-6-2 , Proceedings of the international council for research and innovation in building and construction, Working commission W18 – timber structures, Meeting 11, Vienna, Austria, (1979).

Google Scholar

[12] K. Möhler, Grundlagen der Holz- Hochbaukonstructionen, in Holzbau-Atlas, Institut für intern. Architekturdokumentation, München (1980).

Google Scholar

[13] L.A. Peterson, Zum Tragverhalten nachgiebig verbundener Biegeträger aus Holz, Berichte des Instituts für Bauphysik der Leibniz Universität Hannover Herausgeber: Univ.-Prof. Dr.-Ing. Nabil A. Fouad; Leibniz Universität Hannover - Institut für Bauphysik Heft 1 (2008).

DOI: 10.17285/0869-7035.0078

Google Scholar

[14] R.Pischl, Die praktische Berechnung zusammengesetzter hölzerner Biegeträger mit Hilfstafeln zur Berechnung der Abminderungsfaktoren. Der Bauingenieur, 44 (1969) 181-185.

Google Scholar

[15] R. Pischl, Die direkte Bemessung der Verbindungsmittel bei zusammengesetzten Biegeträgern im Holzbau unter Voraussetzung von DIN 1052, Absatz 5. Der Bauingenieur, 48 (1973) 293-296+470.

Google Scholar

[16] W. Schelling, Genauere Berechnung nachgiebig verbundener Holzbiegeträger mit dem γ-Verfahren In: Festschrift E. Csiesielski. WernerVerlag (1998) 10.

Google Scholar

[17] A. Scholz, Ein Beitrag zur berechnung von Flächentragwerken aus Holz, Dissertation, TU München, (2003).

Google Scholar

[18] G. Schickhofer, Determination of shear strength values for GLT using visual and machine graded spruce laminations, Venice, Italy, CIB, W18 (34):12-6, (2001).

Google Scholar

[19] G. Schickhofer, Cross Laminated Timber (CLT) in Europe – from Conception to Implementation, presentation, University of British Columbia, Department of Wood Science, Vancouver, Canada (2010).

Google Scholar

[20] EN 1995-1-1:2008: Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings, European Committee for Standardization CEN, Bruxelles, Belgium, (2008).

DOI: 10.3403/03174906

Google Scholar

[21] A.M. Bidakov, Metodolohiia rozrakhunku panelei z poperechnoi kleienoi derevyny ta yikh vuzliv. Dis. dokt.tekhn. nauk. Kharkiv, (2020) 349.

Google Scholar

[22] P. Szeptynski, Closed-form analytical solution to the problem of bending of a multilayer composite beam – Derivation and verification, Composite Structures. 291 (2022) 115611.

DOI: 10.1016/j.compstruct.2022.115611

Google Scholar

[23] A.R. Rzhanitsyin, Sostavnyie sterzhni i plastinki. M., (1986) 315.

Google Scholar

[24] S. Timoshenko, Woinowsky-Krieger, Theory of Plates and Shells. New York Toronto London, (1959) 635.

Google Scholar

[25] T. Azizov, Determination of Bending and Torque moments in Orthotropic Plate as in a Crossbeam System, Sciences of Europe, 1 87(2022) 61-63.

Google Scholar

[26] T. Azizov, Improvement of the Displacement Method for the Calculation of Reinforced Concrete Rod Systems// Sciences of Europe, 96 (2022) 33-37.

Google Scholar

[27] T. Azizov, D. Kochkarev, Limits of Using the Theory of Plates in the Calculation of Reinforced Concrete Slabs, Sciences of Europe, 111(2023) 28-32.

Google Scholar

[28] T.N. Azizov, A.V. Kovrov, R. Pereiras, Do pytannia skincheno-elementnoho modeliuvannia pry rozrakhunku zalizobetonnykh plyt, Resursoekonomni materialy, konstruktsii, budivli ta sporudy.– Rivne: Nats. un-t vodnoho hospodarstva ta pryrodokorystuvannia, 45 (2024) 85-95.

Google Scholar

[29] DBN V.2.6-161:2017. Dereviani konstruktsii. Osnovni polozhennia. Kyiv, (2017) 111.

Google Scholar

[30] EN 338:2009-10, "Structural timber – Strength classes" European Committee for Standartisation, Brussels (2009).

Google Scholar