[1]
Candela, G. Sandrini, M. Gadola, D. Chindamo, P. Magri, Lightweighting in the automotive industry as a measure for energy efficiency: Review of the main materials and methods, Heliyon 10 (2024) e29728.
DOI: 10.1016/j.heliyon.2024.e29728
Google Scholar
[2]
L. Yan, H. Xu, Lightweight composite materials in automotive engineering: State-of-the-art and future trends, Alex. Eng. J. 118 (2025) 1–10.
Google Scholar
[3]
Q. Fan, H. Duan, X. Xing, A review of composite materials for enhancing support, flexibility and strength in exercise, Alex. Eng. J. 94 (2024) 90–103.
DOI: 10.1016/j.aej.2024.03.048
Google Scholar
[4]
Wagih, H.A. Mahmoud, G. Lubineau, 3D printed auxetic metal stiffener for lightweight metal–composite T-joints with high strength and toughness, Mater. Des. 241 (2024) 112963.
DOI: 10.1016/j.matdes.2024.112963
Google Scholar
[5]
J. Li, Z. Liu, M. Liu, Y. Kuang, Z. Zhang, X. Chen, Temperature-dependent creep damage mechanism and prediction model of fiber-reinforced phenolic resin composites, Int. J. Mech. Sci. 278 (2024) 109477.
DOI: 10.1016/j.ijmecsci.2024.109477
Google Scholar
[6]
A.S. Nitai, T. Chowdhury, M.N. Inam, M.S. Rahman, M.I.H. Mondal, M.A.H. Johir, V. Hessel, I.M.R. Fattah, M.A. Kalam, W.A. Suwaileh, J.L. Zhou, M. Zargar, M.B. Ahmed, Carbon fiber and carbon fiber composites—creating defects for superior material properties, Adv. Compos. Hybrid Mater. 7 (2024) 169.
DOI: 10.1007/s42114-024-00971-x
Google Scholar
[7]
H. Zhao, Z. Yang, L. Guo, Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications, NPG Asia Mater. 10 (2018) 1–22.
DOI: 10.1038/s41427-018-0009-6
Google Scholar
[8]
Z. Wu, X. Wang, K. Iwashita, T. Sasaki, Y. Hamaguchi, Tensile fatigue behaviour of FRP and hybrid FRP sheets, Compos. Part B Eng. 41 (2010) 396–402.
DOI: 10.1016/j.compositesb.2010.02.001
Google Scholar
[9]
N.K. Balasubramani, B. Zhang, N.T. Chowdhury, A. Mukkavilli, M. Suter, G.M. Pearce, Micro-mechanical analysis on random RVE size and shape in multiscale finite element modelling of unidirectional FRP composites, Compos. Struct. 282 (2022) 115081.
DOI: 10.1016/j.compstruct.2021.115081
Google Scholar
[10]
T. Sun, R. Jiang, Y. Liu, D. Liu, H. Sun, Reliability-based optimization design of carbon fiber reinforced plastics crossbeam of twist-beam suspension, J. Mech. Sci. Technol. 37 (2023) 727–737.
DOI: 10.1007/s12206-023-0116-3
Google Scholar
[11]
G. Sendeckyj, S. Wang, W. Steven Johnson, W. Stinchcomb, C. Chamis, Mechanics of Composite Materials: Past, Present, and Future, J. Compos. Technol. Res. 11 (1989) 3.
DOI: 10.1520/ctr10143j
Google Scholar
[12]
Z. Xia, Y. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct. 40 (2003) 1907–1921.
DOI: 10.1016/s0020-7683(03)00024-6
Google Scholar
[13]
S.L. Omairey, P.D. Dunning, S. Sriramula, Development of an ABAQUS plugin tool for periodic RVE homogenisation, Eng. Comput. 35 (2019) 567–577.
DOI: 10.1007/s00366-018-0616-4
Google Scholar
[14]
M. Shan, L. Zhao, J. Ye, A Novel Micromechanics-Model-Based Probabilistic Analysis Method for the Elastic Properties of Unidirectional CFRP Composites, Materials 15 (2022) 5090.
DOI: 10.3390/ma15155090
Google Scholar
[15]
M. Shokrieh, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments — I. Modelling, Int. J. Fatigue 19 (1997) 201–207.
DOI: 10.1016/s0142-1123(96)00074-6
Google Scholar
[16]
M. Shokrieh, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation, Int. J. Fatigue 19 (1997) 209–217.
DOI: 10.1016/s0142-1123(96)00068-0
Google Scholar
[17]
Khan, S. Venkataraman, I. Miller, Predicting Fatigue Damage of Composites Using Strength Degradation and Cumulative Damage Model, J. Compos. Sci. 2 (2018) 9.
DOI: 10.3390/jcs2010009
Google Scholar
[18]
Z. Hashin, Fatigue Failure Criteria for Unidirectional Fiber Composites, J. Appl. Mech. 48 (1981) 846–852.
DOI: 10.1115/1.3157744
Google Scholar