Multiscale Dispersity Analysis and Fatigue Life Prediction of Fiber-Reinforced Composites

Article Preview

Abstract:

Fiber-reinforced composites are widely used in lightweight design for their exceptional specific strength. However, their inherent multiscale property variations require systematic consideration during structural optimization. This study develops a cross-scale analysis framework and fatigue life prediction model that explicitly accounts for the propagation of mechanical property variations from microscale constituent properties to macroscopic performance, utilizing representative volume element (RVE) modeling. Application of the framework to a carbon fiber composite battery box verifies its predictive capability, with results quantitatively revealing the mechanisms by which property variations affect structural durability. These findings establish a fundamental methodology for evaluating the operational performance of automotive composite structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 381)

Pages:

23-30

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Candela, G. Sandrini, M. Gadola, D. Chindamo, P. Magri, Lightweighting in the automotive industry as a measure for energy efficiency: Review of the main materials and methods, Heliyon 10 (2024) e29728.

DOI: 10.1016/j.heliyon.2024.e29728

Google Scholar

[2] L. Yan, H. Xu, Lightweight composite materials in automotive engineering: State-of-the-art and future trends, Alex. Eng. J. 118 (2025) 1–10.

Google Scholar

[3] Q. Fan, H. Duan, X. Xing, A review of composite materials for enhancing support, flexibility and strength in exercise, Alex. Eng. J. 94 (2024) 90–103.

DOI: 10.1016/j.aej.2024.03.048

Google Scholar

[4] Wagih, H.A. Mahmoud, G. Lubineau, 3D printed auxetic metal stiffener for lightweight metal–composite T-joints with high strength and toughness, Mater. Des. 241 (2024) 112963.

DOI: 10.1016/j.matdes.2024.112963

Google Scholar

[5] J. Li, Z. Liu, M. Liu, Y. Kuang, Z. Zhang, X. Chen, Temperature-dependent creep damage mechanism and prediction model of fiber-reinforced phenolic resin composites, Int. J. Mech. Sci. 278 (2024) 109477.

DOI: 10.1016/j.ijmecsci.2024.109477

Google Scholar

[6] A.S. Nitai, T. Chowdhury, M.N. Inam, M.S. Rahman, M.I.H. Mondal, M.A.H. Johir, V. Hessel, I.M.R. Fattah, M.A. Kalam, W.A. Suwaileh, J.L. Zhou, M. Zargar, M.B. Ahmed, Carbon fiber and carbon fiber composites—creating defects for superior material properties, Adv. Compos. Hybrid Mater. 7 (2024) 169.

DOI: 10.1007/s42114-024-00971-x

Google Scholar

[7] H. Zhao, Z. Yang, L. Guo, Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications, NPG Asia Mater. 10 (2018) 1–22.

DOI: 10.1038/s41427-018-0009-6

Google Scholar

[8] Z. Wu, X. Wang, K. Iwashita, T. Sasaki, Y. Hamaguchi, Tensile fatigue behaviour of FRP and hybrid FRP sheets, Compos. Part B Eng. 41 (2010) 396–402.

DOI: 10.1016/j.compositesb.2010.02.001

Google Scholar

[9] N.K. Balasubramani, B. Zhang, N.T. Chowdhury, A. Mukkavilli, M. Suter, G.M. Pearce, Micro-mechanical analysis on random RVE size and shape in multiscale finite element modelling of unidirectional FRP composites, Compos. Struct. 282 (2022) 115081.

DOI: 10.1016/j.compstruct.2021.115081

Google Scholar

[10] T. Sun, R. Jiang, Y. Liu, D. Liu, H. Sun, Reliability-based optimization design of carbon fiber reinforced plastics crossbeam of twist-beam suspension, J. Mech. Sci. Technol. 37 (2023) 727–737.

DOI: 10.1007/s12206-023-0116-3

Google Scholar

[11] G. Sendeckyj, S. Wang, W. Steven Johnson, W. Stinchcomb, C. Chamis, Mechanics of Composite Materials: Past, Present, and Future, J. Compos. Technol. Res. 11 (1989) 3.

DOI: 10.1520/ctr10143j

Google Scholar

[12] Z. Xia, Y. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct. 40 (2003) 1907–1921.

DOI: 10.1016/s0020-7683(03)00024-6

Google Scholar

[13] S.L. Omairey, P.D. Dunning, S. Sriramula, Development of an ABAQUS plugin tool for periodic RVE homogenisation, Eng. Comput. 35 (2019) 567–577.

DOI: 10.1007/s00366-018-0616-4

Google Scholar

[14] M. Shan, L. Zhao, J. Ye, A Novel Micromechanics-Model-Based Probabilistic Analysis Method for the Elastic Properties of Unidirectional CFRP Composites, Materials 15 (2022) 5090.

DOI: 10.3390/ma15155090

Google Scholar

[15] M. Shokrieh, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments — I. Modelling, Int. J. Fatigue 19 (1997) 201–207.

DOI: 10.1016/s0142-1123(96)00074-6

Google Scholar

[16] M. Shokrieh, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation, Int. J. Fatigue 19 (1997) 209–217.

DOI: 10.1016/s0142-1123(96)00068-0

Google Scholar

[17] Khan, S. Venkataraman, I. Miller, Predicting Fatigue Damage of Composites Using Strength Degradation and Cumulative Damage Model, J. Compos. Sci. 2 (2018) 9.

DOI: 10.3390/jcs2010009

Google Scholar

[18] Z. Hashin, Fatigue Failure Criteria for Unidirectional Fiber Composites, J. Appl. Mech. 48 (1981) 846–852.

DOI: 10.1115/1.3157744

Google Scholar