[1]
Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. (2020). Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 MSF, 70–75
DOI: 10.4028/www.scientific.net/MSF.1006.70
Google Scholar
[2]
Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1/10 (91), 50–55
DOI: 10.15587/1729-4061.2018.122419
Google Scholar
[3]
Qian-ran Hu, Xing-yuShen, Xin-mingQian, Guang-yan Huang, Meng-qi Yuan. The personal protective equipment (PPE) based on individual combat: A systematic review and trend analysis. Defence Technology, 28 (2023) 195‒221.
DOI: 10.1016/j.dt.2022.12.007
Google Scholar
[4]
Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2/10 (92), 44–49
DOI: 10.15587/1729-4061.2018.125926
Google Scholar
[5]
Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. (2021). Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166
DOI: 10.15587/978-617-7319-43-5
Google Scholar
[6]
Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3/9(93), 34–40
DOI: 10.15587/1729-4061.2018.133127
Google Scholar
[7]
Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3/5 (87), 37–44.
DOI: 10.15587/1729-4061.2017.104039
Google Scholar
[8]
Vasilchenko, A., Otrosh, Yu., Adamenko, N., Doronin, E., Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, № 02036
DOI: 10.1051/matecconf/201823002036
Google Scholar
[9]
Kovalov, A., Otrosh, Yu., Surianinov, M., Kovalevska, T. (2019). Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences. Materials Science Forum, 968 MSF, 361–367
DOI: 10.4028/www.scientific.net/MSF.968.361
Google Scholar
[10]
Pozdieiev, S., Nuianzin, O., Sidnei, S., Shchipets, S. (2017). Computational study of bearing walls fire resistance tests efficiency using different combustion furnaces configurations. MATEC Web of Conferences, 116, № 02027
DOI: 10.1051/matecconf/201711602027
Google Scholar
[11]
Shnal, T., Pozdieiev, S., Nuianzin, O., Sidnei, S. (2020). Improvement of the assessment method for fire resistance of steel structures in the temperature regime of fire under realistic conditions. Materials Science Forum, 1006 MSF, 107–116
DOI: 10.4028/www.scientific.net/MSF.1006.107
Google Scholar
[12]
Manish Kumar Bhuarya, Mayank Singh Rajput, Arpan Gupta. Finite Element Simulation of Impact on Metal Plate. Procedia Engineering, 173 (2017) 259‒263.
DOI: 10.1016/j.proeng.2016.12.009
Google Scholar
[13]
Ernetič, J. &Kosec, Borut&Kosec, G. &Burzic, Zijah & Podlipec, Boštjan & Nagode, Aleš & Karpe, Blaz & Kanalec, S. &Vodopivec, Franc &Kosec, L. Phenomena in penetrating piercing bullets in armored steel plate. Metalurgija, 55 (2016) 95‒98.
DOI: 10.7251/comen1602137b
Google Scholar
[14]
Spasi, Dragoljub M. NUMERICAL MODELING OF THE IMPACT OF PROJECTILES ON METAL STRUCTURES Vojnotehnickiglasnik/Military Technical Courier University of Defence, 66 (1) (2018) 63‒105.
Google Scholar
[15]
A Banerjee, S Dharb, S Acharyyab, D Datta, N Nayaka. Numerical simulation of ballistic impact of armour steel plate by typical armour piercing projectile.11th International Symposium on Plasticity and Impact Mechanics, Implast Procedia Engineering, 173 (2017) 347‒354.
DOI: 10.1016/j.proeng.2016.12.028
Google Scholar
[16]
J Sh Li, N Li, J Wang and Zh G Tao. Numerical simulation of the asymmetric bullet penetrating the perforated steel plate. Journal of Physics: Conference Series, 1507 (2020) 032043.
DOI: 10.1088/1742-6596/1507/3/032043
Google Scholar
[17]
O. Kostromitskaya. Computer modeling of processes penetration of metal and metal-ceramic plates. Bulletin of NTU «KhPI». Series: Dynamics and strength of machines. Kharkiv: NTU «KhPI», № 46 (1218) (2016) 26–34.
DOI: 10.20998/2078-9130.2016.46.88046
Google Scholar
[18]
Y.C. Lin, Xiao-Min Chen, Ge Liu,A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Materials Science and Engineering, 527(26) (2010) 6980‒6986.
DOI: 10.1016/j.msea.2010.07.061
Google Scholar
[19]
Luca Gambirasio, EgidioRizzi,An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow,Computational Materials Science, 113 (2016) 231‒265.
DOI: 10.1016/j.commatsci.2015.11.034
Google Scholar
[20]
M.F. Buchely, X. Wang, D.C. Van Aken, R. J. O'Malley, S. Lekakh, and K. Chandrashekhara, «The Use of Genetic Algorithms to Calibrate Johnson–Cook Strength and Failure Parameters of AISI/SAE 1018 Steel.» ASME. J. Eng. Mater. Technol, 141(2) (2019) 021012.
DOI: 10.1115/1.4042382
Google Scholar
[21]
Xian-Yu Li, Zhao-Hui Zhang, Xing-Wang Cheng, Xiu-Ping Liu, Shun-Zhong Zhang, Jian-Ye He, Qiang Wang, Luo-Jin Liu, he investigation on Johnson-Cook model and dynamic mechanical behaviors of ultra-high strength steel M54, Materials Science and Engineering, 835 (2022) 142693.
DOI: 10.1016/j.msea.2022.142693
Google Scholar