The Influence of a Finite Element Mesh on the Reliability of the Results of Dynamic Processes of Armor Penetration of a Steel Plate by a Bullet

Article Preview

Abstract:

This paper investigates the influence of finite element mesh parameters on the accuracy of modeling the penetration of a steel plate by a bullet in the ExplicitDynamics ANSYS WB computational module. The best results were obtained for the 3rd type of mesh, which included 180 finite elements in the contact zone. For the plate made of impact-resistant S-7 steel, the maximum stresses for the 2nd type of mesh at the attempted penetration reached 1 572,7 MPa, but no penetration was observed. For the S-7 steel plates, penetration was observed only when using the third type of mesh, which confirms the importance of density in the contact zone for an adequate description of dynamic processes. The analysis showed that the Sweep method with density is optimal for modeling steel plate penetration due to the balance of calculation performance and accuracy of the results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 381)

Pages:

47-58

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. (2020). Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 MSF, 70–75

DOI: 10.4028/www.scientific.net/MSF.1006.70

Google Scholar

[2] Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1/10 (91), 50–55

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[3] Qian-ran Hu, Xing-yuShen, Xin-mingQian, Guang-yan Huang, Meng-qi Yuan. The personal protective equipment (PPE) based on individual combat: A systematic review and trend analysis. Defence Technology, 28 (2023) 195‒221.

DOI: 10.1016/j.dt.2022.12.007

Google Scholar

[4] Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2/10 (92), 44–49

DOI: 10.15587/1729-4061.2018.125926

Google Scholar

[5] Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. (2021). Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166

DOI: 10.15587/978-617-7319-43-5

Google Scholar

[6] Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3/9(93), 34–40

DOI: 10.15587/1729-4061.2018.133127

Google Scholar

[7] Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3/5 (87), 37–44.

DOI: 10.15587/1729-4061.2017.104039

Google Scholar

[8] Vasilchenko, A., Otrosh, Yu., Adamenko, N., Doronin, E., Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, № 02036

DOI: 10.1051/matecconf/201823002036

Google Scholar

[9] Kovalov, A., Otrosh, Yu., Surianinov, M., Kovalevska, T. (2019). Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences. Materials Science Forum, 968 MSF, 361–367

DOI: 10.4028/www.scientific.net/MSF.968.361

Google Scholar

[10] Pozdieiev, S., Nuianzin, O., Sidnei, S., Shchipets, S. (2017). Computational study of bearing walls fire resistance tests efficiency using different combustion furnaces configurations. MATEC Web of Conferences, 116, № 02027

DOI: 10.1051/matecconf/201711602027

Google Scholar

[11] Shnal, T., Pozdieiev, S., Nuianzin, O., Sidnei, S. (2020). Improvement of the assessment method for fire resistance of steel structures in the temperature regime of fire under realistic conditions. Materials Science Forum, 1006 MSF, 107–116

DOI: 10.4028/www.scientific.net/MSF.1006.107

Google Scholar

[12] Manish Kumar Bhuarya, Mayank Singh Rajput, Arpan Gupta. Finite Element Simulation of Impact on Metal Plate. Procedia Engineering, 173 (2017) 259‒263.

DOI: 10.1016/j.proeng.2016.12.009

Google Scholar

[13] Ernetič, J. &Kosec, Borut&Kosec, G. &Burzic, Zijah & Podlipec, Boštjan & Nagode, Aleš & Karpe, Blaz & Kanalec, S. &Vodopivec, Franc &Kosec, L. Phenomena in penetrating piercing bullets in armored steel plate. Metalurgija, 55 (2016) 95‒98.

DOI: 10.7251/comen1602137b

Google Scholar

[14] Spasi, Dragoljub M. NUMERICAL MODELING OF THE IMPACT OF PROJECTILES ON METAL STRUCTURES Vojnotehnickiglasnik/Military Technical Courier University of Defence, 66 (1) (2018) 63‒105.

Google Scholar

[15] A Banerjee, S Dharb, S Acharyyab, D Datta, N Nayaka. Numerical simulation of ballistic impact of armour steel plate by typical armour piercing projectile.11th International Symposium on Plasticity and Impact Mechanics, Implast Procedia Engineering, 173 (2017) 347‒354.

DOI: 10.1016/j.proeng.2016.12.028

Google Scholar

[16] J Sh Li, N Li, J Wang and Zh G Tao. Numerical simulation of the asymmetric bullet penetrating the perforated steel plate. Journal of Physics: Conference Series, 1507  (2020) 032043.

DOI: 10.1088/1742-6596/1507/3/032043

Google Scholar

[17] O. Kostromitskaya. Computer modeling of processes penetration of metal and metal-ceramic plates. Bulletin of NTU «KhPI». Series: Dynamics and strength of machines. Kharkiv: NTU «KhPI», № 46 (1218) (2016) 26–34.

DOI: 10.20998/2078-9130.2016.46.88046

Google Scholar

[18] Y.C. Lin, Xiao-Min Chen, Ge Liu,A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Materials Science and Engineering, 527(26) (2010) 6980‒6986.

DOI: 10.1016/j.msea.2010.07.061

Google Scholar

[19] Luca Gambirasio, EgidioRizzi,An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow,Computational Materials Science, 113 (2016) 231‒265.

DOI: 10.1016/j.commatsci.2015.11.034

Google Scholar

[20] M.F. Buchely, X. Wang, D.C. Van Aken, R. J. O'Malley, S. Lekakh, and K. Chandrashekhara, «The Use of Genetic Algorithms to Calibrate Johnson–Cook Strength and Failure Parameters of AISI/SAE 1018 Steel.» ASME. J. Eng. Mater. Technol, 141(2) (2019) 021012.

DOI: 10.1115/1.4042382

Google Scholar

[21] Xian-Yu Li, Zhao-Hui Zhang, Xing-Wang Cheng, Xiu-Ping Liu, Shun-Zhong Zhang, Jian-Ye He, Qiang Wang, Luo-Jin Liu, he investigation on Johnson-Cook model and dynamic mechanical behaviors of ultra-high strength steel M54, Materials Science and Engineering, 835 (2022) 142693.

DOI: 10.1016/j.msea.2022.142693

Google Scholar