[1]
CEB-FIP Model Code 1990, Design Code, Comité Euro-International du Béton, Lausanne, 1991.
DOI: 10.1680/ceb-fipmc1990.35430
Google Scholar
[2]
Fib Model Code 2010, Final draft, Fib Bulletin. 66(2) (2012) 377.
Google Scholar
[3]
W.H. Dilger, R. Koch and R. Kowalczyk, Ductility of plain and confined concrete under different strain rates, ACI Journal, 81(1) (1984) 73-81.
DOI: 10.14359/10649
Google Scholar
[4]
L.E. Malvern, D.A. Jenkins, T. Tang, C.A. Ross, Dynamic compressive testing of concrete, Proceedings of the Second Symposium on The Interaction of Non-Nuclear Munitions with Structures, (1985) 194-199.
Google Scholar
[5]
J.W. Tedesco, C.A. Ross, Strain-rate-dependent constitutive equations for concrete, ASME J. Press. Vessel Technol., 120 (1998) 398-405.
DOI: 10.1115/1.2842350
Google Scholar
[6]
D.L. Grote, S.W. Park, M. Zhou, Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization, International Journal of Impact Engineering, 25 (2001) 869-886.
DOI: 10.1016/s0734-743x(01)00020-3
Google Scholar
[7]
K.S. Long, M. Kasmuri, A.S.Z. Hasan, R. Hamid, Dynamic Increase Factor of High Strength Concrete with Silica Fume at High Strain Rate Loading, Materials Science Forum, 857 (2016) 299-304.
DOI: 10.4028/www.scientific.net/msf.857.299
Google Scholar
[8]
S. Lee, K.-M. Kim, J.-Y. Cho, Investigation into Pure Rate Effect on Dynamic Increase Factor for Concrete Compressive Strength, Procedia Engineering, 210 (2017) 11-17.
DOI: 10.1016/j.proeng.2017.11.042
Google Scholar
[9]
B. Sun, R. Chen, Y. Ping, Z. Zhu, N. Wu, Z. Shi, Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test, Materials, 15 (2022) 2995.
DOI: 10.3390/ma15092995
Google Scholar
[10]
W.L. Cowell, Dynamic properties of plain Portland cement concrete, Technical Report No. R447. US Naval Civil Engineering Laboratory, Port Hueneme, California, 1966.
Google Scholar
[11]
S. Kono, F. Watanabe, A. Kajitani, Stress-strain relation of confined concrete under dynamic loading, In Fracture Mechanics of Concrete Structures, de Borst et al. (Ed.). Swets & Zeitlinger, Lisse, Netherlands, (2001) 585-592.
Google Scholar
[12]
H. Othman, H. Marzouk, Strain Rate Sensitivity of Fiber-Reinforced Cementitious Composites, ACI Materials Journal, 113(2) (2016) 143-150.
DOI: 10.14359/51688461
Google Scholar
[13]
O. Hjorth, Ein Beitrag zur Frage der Festigkeiten und des Verbundverhaltens von Stahl und Beton bei hohen Dehnungsgeschwindigkeiten, Dissertation TU Braunschweig, 1976.
Google Scholar
[14]
B.P. Hughes, A.J. Watson, Compressive strength and ultimate strain of concrete under impact loading, Mag. Concr. Res, 30(105) (1978) 189-199.
DOI: 10.1680/macr.1978.30.105.189
Google Scholar
[15]
D. Watstein, Effect of straining rate on the compressive strength and elastic properties of concrete, ACI Journal, 49 (1953) 729-744.
DOI: 10.14359/11850
Google Scholar
[16]
B. Bresler, V.V. Bertero, Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression, Proceedings of 2nd Canadian Conference on Earthquake Engineering, Hamilton, Ontario, (1975) 1-13.
Google Scholar
[17]
F.S. Rostasy, J. Scheuermann and K.H. Sprenger, Mechanical behaviour of some construction materials subjected to rapid loading and low temperature, Betonwerk+Fertigteil-Technik., 50(6) (1984) 393-401.
Google Scholar
[18]
O. Graf und E. Brenner, Versuche mit Betonkörpern, die einer dauernd wirkenden Druckbelastung ausgesetzt waren, BAUINGENIEUR,19/20 (1937) 237-270.
Google Scholar
[19]
J. R. Shank, Plastic Flow of Concrete at High Overload, ACI Journal, 20(6) (1949) 493-498.
Google Scholar
[20]
R. Sell, Investigation into the Strength of Concrete Under Sustained Load, RILEM Bulletin, 5 (1959) 1-13.
Google Scholar
[21]
H. Rüsch, Versuche zur Bestimmung des Einflusses der Zeit auf Festigkeit und Verformung, IABSE Kongressbericht, 5 (1956) 237-244.
Google Scholar
[22]
H. Rüsch, Researches Toward a General Flexural Theory for Structural Concrete, ACI Journal, 57(1) (1960) 1-28.
DOI: 10.14359/8009
Google Scholar
[23]
M. E. Awad and H. K. Hilsdorf, Strength and Deformation Characteristics of Plain Concrete Subjected to High Repeated and Sustained Loads, Structural Research Series, 372 (1971) 266.
Google Scholar
[24]
S. Stöckl, Strength of Concrete under Uniaxial Sustained Loading, SP-34 Concrete for Nuclear Reactors, 1 (1972) 313-326.
Google Scholar
[25]
M.M. Smadi, F.O. Slate and A.H. Nilson, High-, Medium-, and Low-Strength Concretes Subject to Sustained Overloads - Strains, Strengths, and Failure Mechanisms, ACI Materials Journal, 82(5) (1985) 657-664.
DOI: 10.14359/10376
Google Scholar
[26]
S. Iravani, J. G. MacGregor, Sustained load strength and short-term strain behavior of high-strength concrete, ACI Materials Journal, 95(5) (1998) 636-647.
DOI: 10.14359/406
Google Scholar
[27]
D. Tasevski, Ruiz M. Fernández and A. Muttoni, Compressive Strength and Deformation Capacity of Concrete under Sustained Loading and Low Stress Rates, Journal of Advanced Concrete Technology, 16 (2018) 396-415.
DOI: 10.3151/jact.16.396
Google Scholar
[28]
V.M. Romashko, General model and the mechanics of concrete elements and structures deformation, IOP Conf. Ser.: Materials Science and Engineering, 1021 (2021) 012026.
DOI: 10.1088/1757-899x/1021/1/012026
Google Scholar
[29]
O.V. Romashko, V.M. Romashko, Model of multilevel formation of normal cracks in reinforced concrete elements and structures, IOP Conf. Ser.: Materials Science and Engineering, 708 (2019) 012069.
DOI: 10.1088/1757-899x/708/1/012069
Google Scholar
[30]
V. Romashko, O. Romashko, Fundamentals of the General Theory of Resistance of Reinforced Concrete Elements and Structures to Power Influences, Materials Science Forum, 968 (2019) 534-540.
DOI: 10.4028/www.scientific.net/msf.968.534
Google Scholar
[31]
V.M. Romashko and O.V. Romashko, Energy resource of reinforced concrete elements and structures for the deformation-force model of their deformation, IOP Conf. Ser.: Mater. Sci. Eng., 708 (2019) 012068.
DOI: 10.1088/1757-899x/708/1/012068
Google Scholar
[32]
O. Romashko-Maistruk, V. Romashko, Basic Characteristics of the Deformation Diagrams of Compressed Concrete under the Action of Dynamic Loads, Materials Science Forum, 1140 (2024) 47-55.
DOI: 10.4028/p-jg19he
Google Scholar
[33]
V. Romashko, O. Romashko-Maistruk, Strength resource calculation of the reinforced concrete elements according to the energy criterion, Procedia Structural Integrity, 36 (2022) 269-276.
DOI: 10.1016/j.prostr.2022.01.034
Google Scholar
[34]
O. Romashko-Maistruk, V. Romashko, Model of concrete deformation under the action of dynamic loads, Procedia Structural Integrity, 59 (2024) 352-359.
DOI: 10.1016/j.prostr.2024.04.050
Google Scholar
[35]
O.V. Romashko-Maistruk, V.M. Romashko, Modeliuvannia diahramy napruzhennia-deformatsii stysnutoho betonu za dii dovhotryvalykh navantazhen [Simulation of stress-strain diagram of compressed concrete under long-term loads], Resource-saving materials, structures, buildings and structures: collection of scientific works NUWEE, 46 (2024) 275-282.
DOI: 10.18664/1994-7852.206.2023.296654
Google Scholar