Dependence of the Elastoplastic Properties of Compressed Concrete on its Strain Rate

Article Preview

Abstract:

The article is devoted to the determination of the main physical and mechanical characteristics of compressed concrete at different strain rates of its. A method for predicting the main strength and deformation characteristics of compressed concrete in the widest range of its loading rates is proposed: from instantaneous dynamic to long-term with the maximum possible development of creep deformations. This method is based on the well-known law of conservation of potential energy of material deformation (up to its destruction) and the general patterns of change of the known integral characteristic of concrete - the factor of elasticity-plasticity. The functional interdependence of the levels of strength and deformability of compressed concrete for its different strain rates was established.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 381)

Pages:

73-80

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] CEB-FIP Model Code 1990, Design Code, Comité Euro-International du Béton, Lausanne, 1991.

DOI: 10.1680/ceb-fipmc1990.35430

Google Scholar

[2] Fib Model Code 2010, Final draft, Fib Bulletin. 66(2) (2012) 377.

Google Scholar

[3] W.H. Dilger, R. Koch and R. Kowalczyk, Ductility of plain and confined concrete under different strain rates, ACI Journal, 81(1) (1984) 73-81.

DOI: 10.14359/10649

Google Scholar

[4] L.E. Malvern, D.A. Jenkins, T. Tang, C.A. Ross, Dynamic compressive testing of concrete, Proceedings of the Second Symposium on The Interaction of Non-Nuclear Munitions with Structures, (1985) 194-199.

Google Scholar

[5] J.W. Tedesco, C.A. Ross, Strain-rate-dependent constitutive equations for concrete, ASME J. Press. Vessel Technol., 120 (1998) 398-405.

DOI: 10.1115/1.2842350

Google Scholar

[6] D.L. Grote, S.W. Park, M. Zhou, Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization, International Journal of Impact Engineering, 25 (2001) 869-886.

DOI: 10.1016/s0734-743x(01)00020-3

Google Scholar

[7] K.S. Long, M. Kasmuri, A.S.Z. Hasan, R. Hamid, Dynamic Increase Factor of High Strength Concrete with Silica Fume at High Strain Rate Loading, Materials Science Forum, 857 (2016) 299-304.

DOI: 10.4028/www.scientific.net/msf.857.299

Google Scholar

[8] S. Lee, K.-M. Kim, J.-Y. Cho, Investigation into Pure Rate Effect on Dynamic Increase Factor for Concrete Compressive Strength, Procedia Engineering, 210 (2017) 11-17.

DOI: 10.1016/j.proeng.2017.11.042

Google Scholar

[9] B. Sun, R. Chen, Y. Ping, Z. Zhu, N. Wu, Z. Shi, Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test, Materials, 15 (2022) 2995.

DOI: 10.3390/ma15092995

Google Scholar

[10] W.L. Cowell, Dynamic properties of plain Portland cement concrete, Technical Report No. R447. US Naval Civil Engineering Laboratory, Port Hueneme, California, 1966.

Google Scholar

[11] S. Kono, F. Watanabe, A. Kajitani, Stress-strain relation of confined concrete under dynamic loading, In Fracture Mechanics of Concrete Structures, de Borst et al. (Ed.). Swets & Zeitlinger, Lisse, Netherlands, (2001) 585-592.

Google Scholar

[12] H. Othman, H. Marzouk, Strain Rate Sensitivity of Fiber-Reinforced Cementitious Composites, ACI Materials Journal, 113(2) (2016) 143-150.

DOI: 10.14359/51688461

Google Scholar

[13] O. Hjorth, Ein Beitrag zur Frage der Festigkeiten und des Verbundverhaltens von Stahl und Beton bei hohen Dehnungsgeschwindigkeiten, Dissertation TU Braunschweig, 1976.

Google Scholar

[14] B.P. Hughes, A.J. Watson, Compressive strength and ultimate strain of concrete under impact loading, Mag. Concr. Res, 30(105) (1978) 189-199.

DOI: 10.1680/macr.1978.30.105.189

Google Scholar

[15] D. Watstein, Effect of straining rate on the compressive strength and elastic properties of concrete, ACI Journal, 49 (1953) 729-744.

DOI: 10.14359/11850

Google Scholar

[16] B. Bresler, V.V. Bertero, Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression, Proceedings of 2nd Canadian Conference on Earthquake Engineering, Hamilton, Ontario, (1975) 1-13.

Google Scholar

[17] F.S. Rostasy, J. Scheuermann and K.H. Sprenger, Mechanical behaviour of some construction materials subjected to rapid loading and low temperature, Betonwerk+Fertigteil-Technik., 50(6) (1984) 393-401.

Google Scholar

[18] O. Graf und E. Brenner, Versuche mit Betonkörpern, die einer dauernd wirkenden Druckbelastung ausgesetzt waren, BAUINGENIEUR,19/20 (1937) 237-270.

Google Scholar

[19] J. R. Shank, Plastic Flow of Concrete at High Overload, ACI Journal, 20(6) (1949) 493-498.

Google Scholar

[20] R. Sell, Investigation into the Strength of Concrete Under Sustained Load, RILEM Bulletin, 5 (1959) 1-13.

Google Scholar

[21] H. Rüsch, Versuche zur Bestimmung des Einflusses der Zeit auf Festigkeit und Verformung, IABSE Kongressbericht, 5 (1956) 237-244.

Google Scholar

[22] H. Rüsch, Researches Toward a General Flexural Theory for Structural Concrete, ACI Journal, 57(1) (1960) 1-28.

DOI: 10.14359/8009

Google Scholar

[23] M. E. Awad and H. K. Hilsdorf, Strength and Deformation Characteristics of Plain Concrete Subjected to High Repeated and Sustained Loads, Structural Research Series, 372 (1971) 266.

Google Scholar

[24] S. Stöckl, Strength of Concrete under Uniaxial Sustained Loading, SP-34 Concrete for Nuclear Reactors, 1 (1972) 313-326.

Google Scholar

[25] M.M. Smadi, F.O. Slate and A.H. Nilson, High-, Medium-, and Low-Strength Concretes Subject to Sustained Overloads - Strains, Strengths, and Failure Mechanisms, ACI Materials Journal, 82(5) (1985) 657-664.

DOI: 10.14359/10376

Google Scholar

[26] S. Iravani, J. G. MacGregor, Sustained load strength and short-term strain behavior of high-strength concrete, ACI Materials Journal, 95(5) (1998) 636-647.

DOI: 10.14359/406

Google Scholar

[27] D. Tasevski, Ruiz M. Fernández and A. Muttoni, Compressive Strength and Deformation Capacity of Concrete under Sustained Loading and Low Stress Rates, Journal of Advanced Concrete Technology, 16 (2018) 396-415.

DOI: 10.3151/jact.16.396

Google Scholar

[28] V.M. Romashko, General model and the mechanics of concrete elements and structures deformation, IOP Conf. Ser.: Materials Science and Engineering, 1021 (2021) 012026.

DOI: 10.1088/1757-899x/1021/1/012026

Google Scholar

[29] O.V. Romashko, V.M. Romashko, Model of multilevel formation of normal cracks in reinforced concrete elements and structures, IOP Conf. Ser.: Materials Science and Engineering, 708 (2019) 012069.

DOI: 10.1088/1757-899x/708/1/012069

Google Scholar

[30] V. Romashko, O. Romashko, Fundamentals of the General Theory of Resistance of Reinforced Concrete Elements and Structures to Power Influences, Materials Science Forum, 968 (2019) 534-540.

DOI: 10.4028/www.scientific.net/msf.968.534

Google Scholar

[31] V.M. Romashko and O.V. Romashko, Energy resource of reinforced concrete elements and structures for the deformation-force model of their deformation, IOP Conf. Ser.: Mater. Sci. Eng., 708 (2019) 012068.

DOI: 10.1088/1757-899x/708/1/012068

Google Scholar

[32] O. Romashko-Maistruk, V. Romashko, Basic Characteristics of the Deformation Diagrams of Compressed Concrete under the Action of Dynamic Loads, Materials Science Forum, 1140 (2024) 47-55.

DOI: 10.4028/p-jg19he

Google Scholar

[33] V. Romashko, O. Romashko-Maistruk, Strength resource calculation of the reinforced concrete elements according to the energy criterion, Procedia Structural Integrity, 36 (2022) 269-276.

DOI: 10.1016/j.prostr.2022.01.034

Google Scholar

[34] O. Romashko-Maistruk, V. Romashko, Model of concrete deformation under the action of dynamic loads, Procedia Structural Integrity, 59 (2024) 352-359.

DOI: 10.1016/j.prostr.2024.04.050

Google Scholar

[35] O.V. Romashko-Maistruk, V.M. Romashko, Modeliuvannia diahramy napruzhennia-deformatsii stysnutoho betonu za dii dovhotryvalykh navantazhen [Simulation of stress-strain diagram of compressed concrete under long-term loads], Resource-saving materials, structures, buildings and structures: collection of scientific works NUWEE, 46 (2024) 275-282.

DOI: 10.18664/1994-7852.206.2023.296654

Google Scholar