[1]
V. Shvabyuk, H. Sulym, O. Mikulich, Stress state of plate with incisions under the action of oscillating concentrated forces, Acta Mech. Autom., 9 (3) (2015) 140–144.
DOI: 10.1515/ama-2015-0023
Google Scholar
[2]
V. I. Shvabyuk, O. A. Mikulich, V. V. Shvabyuk, Stress state of foam media with tunnel openings under non-stationary dynamic loading, Strength Mater., 49 (6) (2017) 818–828.
DOI: 10.1007/s11223-018-9927-3
Google Scholar
[3]
B. Kasal, R. Blass, Experimental and analytical investigation of crack development in composite reinforced laminated arch, Mater. Struct., 46 (1–2) (2013) 173–180.
DOI: 10.1617/s11527-012-9892-4
Google Scholar
[4]
X. Li, C. Guedes Soares, Spectral finite element analysis of in-plane free vibration of laminated composite shallow arches, Compos. Struct., 132 (2015) 484–494.
DOI: 10.1016/j.compstruct.2015.05.060
Google Scholar
[5]
M. Surianinov, Y. Krutii, A. Kovrov, V. Osadchiy, The solution of the problem of free circulation of circular arcs by numerical analytical boundary elements method, E3S Web Conf., 211 (2020) 02022.
DOI: 10.1051/e3sconf/202021102022
Google Scholar
[6]
A. G. Chanda, S. O. Ojo, V. Oliveri, P. M. Weaver, Dynamic analysis of variable stiffness curved composite beams based on the inverse differential quadrature method, Compos. Struct., 363 (2025) 119087.
DOI: 10.1016/j.compstruct.2025.119087
Google Scholar
[7]
Z. Zhang, A. Liu, J. Yang, Y.-L. Pi, Y. Huang, J. Fu, Nonlinear in-plane buckling of shallow laminated arches incorporating shear deformation under a uniform radial loading, Compos. Struct., 252 (2020) 112732.
DOI: 10.1016/j.compstruct.2020.112732
Google Scholar
[8]
M. Y. Yasin, H. M. Khalid, M. S. Beg, Exact solution considering layerwise mechanics for laminated composite and sandwich curved beams of deep curvatures, Compos. Struct., 244 (2020) 112258.
DOI: 10.1016/j.compstruct.2020.112258
Google Scholar
[9]
M. S. Beg, M. Y. Yasin, Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory, Mech. Mater., 159 (2021) 103919.
DOI: 10.1016/j.mechmat.2021.103919
Google Scholar
[10]
S. P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edition. McGraw Hill, New York, 1970.
Google Scholar
[11]
S. G. Lekhnitskii, Anisotropic Plate, Gordon and Breach, New York, 1968.
Google Scholar
[12]
S. G. Lekhnitskii, On the bending of a plane inhomogeneous curved beam, J. Appl. Math. Mech., 43 (1) (1979) 198–200.
Google Scholar
[13]
G. Tolf, Stresses in a curved laminated beam, Fibre Sci. Technol., 19 (4) (1983) 243–267.
DOI: 10.1016/0015-0568(83)90012-x
Google Scholar
[14]
W. L. Ko, R. H. Jackson, Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments, Compos. Struct., 5 (1989) 173–198.
DOI: 10.1007/978-94-009-1125-3_7
Google Scholar
[15]
G. A. Kardomateas, Bending of a cylindrically orthotropic curved beam with linearly distributed elastic constants, Q. J. Mech. Appl. Math., 43 (1990) 43–55.
DOI: 10.1093/qjmam/43.1.43
Google Scholar
[16]
G. A. Kardomateas, End force loading of generally anisotropic curved beams with linearly varying elastic constants, Int. J. Solids Struct., 27 (1) (1991) 59–71.
DOI: 10.1016/0020-7683(91)90145-6
Google Scholar
[17]
J. Dryden, Bending of inhomogeneous curved bars, Int. J. Solids Struct., 44 (11–12) (2007) 4158–4166.
DOI: 10.1016/j.ijsolstr.2006.11.021
Google Scholar
[18]
S. B. Koval'chuk, A. V. Goryk, Elasticity theory solution of the problem on bending of a narrow multilayer cantilever with a circular axis by loads at its end, Mech. Compos. Mater., 54 (5) (2018) 605–620.
DOI: 10.1007/s11029-018-9768-y
Google Scholar
[19]
M. Wang, Y. Liu, Elasticity solutions for orthotropic functionally graded curved beams, Eur. J. Mech. A Solids, 37 (2013) 8–16.
DOI: 10.1016/j.euromechsol.2012.04.005
Google Scholar
[20]
S. B. Koval'chuk, Analytical solution to the plane bending task of the multilayer beam with a circular axis under normal uniform loading, Strength Mater., 52 (5) (2020) 762–778.
DOI: 10.1007/s11223-020-00230-6
Google Scholar
[21]
S. Koval'chuk, A. Goryk, Exact solution of the problem of elastic bending of a multilayer beam under the action of a normal uniform load, Mater. Sci. Forum, 968 (2019) 475–485.
DOI: 10.4028/www.scientific.net/msf.968.475
Google Scholar
[22]
S. Koval'chuk, O. Goryk, S. Yakhin, A. Antonets, Exact analytical solution of the problem of elastic bending of a multilayer beam with a normal trapezoidal load, Key Eng. Mater., 1005 (2024) 107–119.
DOI: 10.4028/p-mzjc71
Google Scholar