[1]
W. Zhang, J. Xu, Advanced lightweight materials for automobiles: a review, Mater. Des. 221 (2022) 110994.
Google Scholar
[2]
D.H. Kim, H.G. Kim, H.S. Kim, Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle, Compos. Struct. 131 (2015) 742-752.
DOI: 10.1016/j.compstruct.2015.06.028
Google Scholar
[3]
S. Zhang, H. Song, L.Y. Xu, and K.F. Cai, Application research on the lightweight design and optimization of carbon fiber reinforced polymers (CFRP) floor for automobile, Polymers. 14 (21) (2022) 4768.
DOI: 10.3390/polym14214768
Google Scholar
[4]
S. Kushwaha, A.K. Bagha. Application of composite materials for vibroacoustic – A review, Mater. Today: Proc. 26 (2) (2020) 1567-1571.
DOI: 10.1016/j.matpr.2020.02.321
Google Scholar
[5]
S.B. Lee, H.J. Yim, Fatigue analysis of vehicle chassis component considering resonance frequency, Trans. Korean. Soc. Mach. Tools. Eng. 13 (6) (2004) 94-101.
Google Scholar
[6]
E.V. Prasad, S.K. Sahu, Vibration analysis of woven fiber metal laminated plates—experimental and numerical studies, Int. J. Struct. Stab. Dy. 18 (11) (2018) 1850144.
DOI: 10.1142/s0219455418501444
Google Scholar
[7]
P. Shi, C.Y. Dong, A refined hyperbolic shear deformation theory for nonlinear bending and vibration isogeometric analysis of laminated composite plates, Thin-Walled Struct. 174 (2022) 109031.
DOI: 10.1016/j.tws.2022.109031
Google Scholar
[8]
V. Kallannavar, B. Kumaran, S.C. Kattimani, Effect of temperature and moisture on free vibration characteristics of skew laminated hybrid composite and sandwich plates, Thin-Walled Struct. 157 (2020) 107113.
DOI: 10.1016/j.tws.2020.107113
Google Scholar
[9]
S. Xiang, K.M. Wang, Y.T. Ai, Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory, Thin-Walled Struct. 47 (2009) 1265-1271.
DOI: 10.1016/j.tws.2009.04.002
Google Scholar
[10]
S. Kwak, K. Kim, J. Kim, and Y. Kim, A meshfree approach for free vibration analysis of laminated sectorial and rectangular plates with varying fiber angle, Thin-Walled Struct. 174 (2022) 109070.
DOI: 10.1016/j.tws.2022.109070
Google Scholar
[11]
S.K. Chakrapani, D.J. Barnard, V. Dayal, Nonlinear forced vibration of carbon fiber/epoxy prepreg composite beams: Theory and experiment, Compos. B Eng. 91 (2016) 513-521.
DOI: 10.1016/j.compositesb.2016.02.009
Google Scholar
[12]
B. Qin, R. Zhong, Q.Y. Wu, and T.T. Wang, A unified formulation for free vibration of laminated plate through Jacobi-Ritz method, Thin-Walled Struct. 144 (2019) 106354.
DOI: 10.1016/j.tws.2019.106354
Google Scholar
[13]
G. Oliveri, J.T.B. Overvelde, Inverse design of mechanical metamaterials that undergo buckling, Adv. Funct. Mater. 30 (12) (2020) 1909033.
DOI: 10.1002/adfm.201909033
Google Scholar
[14]
J.L. Wei, L.Y. Sun, W.T. Lv, Integrated design and experimental verification of assembly fiber reinforced thermoplastic plastics (AFRTP) automobile seat beams, Compos. B Eng. 220 (2021) 108968.
DOI: 10.1016/j.compositesb.2021.108968
Google Scholar
[15]
S. Honda, Y. Narita, Natural frequencies and vibration modes of laminated composite plates reinforced with arbitrary curvilinear fiber shape paths. J. Sound. Vib. 331 (1) (2012) 180-191.
DOI: 10.1016/j.jsv.2011.08.019
Google Scholar
[16]
X.J. Niu, B.C. Li, X. Zhang, Bending performance analysis of variable stiffness composite laminates, Polym. Compos. 45 (8) (2024) 7074-7086.
DOI: 10.1002/pc.28249
Google Scholar