Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: January 2024
Authors: Eny Fatmawati, Sunaryono Sunaryono, Nadiya Miftachul Chusna, Siti Nur Halizah, Futri Yuliana
Fig. 1.
Table 1.
References [1] A.
Sci., vol. 276, no. 1, p. 012059, May 2019, doi: 10.1088/1755-1315/276/1/012059
Gao, “Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations,” Applied Surface Science, vol. 479, pp. 440–448, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.129
Table 1.
References [1] A.
Sci., vol. 276, no. 1, p. 012059, May 2019, doi: 10.1088/1755-1315/276/1/012059
Gao, “Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations,” Applied Surface Science, vol. 479, pp. 440–448, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.129
Online since: July 2011
Authors: Mohammad Jaffar Hadianfard, Reza Taherian, Mozhgan Moradzaman, Ahmad Nozad Golikand
In the range of 1300–1700 cm-1, the spectra clearly show two peaks.
The symmetric peak in 3420 cm-1 is ascribed to the hydroxyl group.
It has previously been reported that the presence of carboxylate ions corresponds to a peak at 1571 cm-1 and a peak at 1400 cm-1 in the FTIR spectrum [22] that can clearly be observed in Figure 9.
References [1] U.
Progress in Polymer Science 34 (2009) 479–515
The symmetric peak in 3420 cm-1 is ascribed to the hydroxyl group.
It has previously been reported that the presence of carboxylate ions corresponds to a peak at 1571 cm-1 and a peak at 1400 cm-1 in the FTIR spectrum [22] that can clearly be observed in Figure 9.
References [1] U.
Progress in Polymer Science 34 (2009) 479–515
Online since: June 2020
Authors: Xiao Ju Gao, Hasigaowa Hasigaowa, Peng Man, Meng Yong Sun, Cheng Dong Liao, Wei Ping Huang, Wu Zhang, Ya Wei Zhou
Fig. 1 XRD patterns of SiC/B4C composite.
(e) (d) (c) (b) (a) 600 s-1 400 s-1 800 s-1 1000 s-1 1200 s-1 Fig. 7 Macroscopic images of impact fracture fragments at various strain rates.
Diamond and Related Materials, 2009, 18(1): 27-33
Journal of Inorganic Materials, 2015, 30(1):102-106
Thin Solid Films, 2005, 479(l-2): 59-63
(e) (d) (c) (b) (a) 600 s-1 400 s-1 800 s-1 1000 s-1 1200 s-1 Fig. 7 Macroscopic images of impact fracture fragments at various strain rates.
Diamond and Related Materials, 2009, 18(1): 27-33
Journal of Inorganic Materials, 2015, 30(1):102-106
Thin Solid Films, 2005, 479(l-2): 59-63
Online since: December 2018
Authors: George Krauss, Kip O. Findley, S.C. Kennett
All of the processing conditions were evaluated in the as-quenched (labeled AsQ) condition or after tempering at 200 °C for 1 h or 600 °C for 1 h.
Fig. 5 shows the calculated 1% offset flow strength (1% FS) versus the square root of the initial dislocation density.
Fig. 7 – Taylor hardening model using a corrected initial dislocation density and the 1% offset flow strength (1% FS).
References [1] T.
Lee, “Effect of austenite grain size on martensitic transformation of a low alloy steel,” Materials Science Forum, vol. 475–479, 2005, pp. 3169–3172
Fig. 5 shows the calculated 1% offset flow strength (1% FS) versus the square root of the initial dislocation density.
Fig. 7 – Taylor hardening model using a corrected initial dislocation density and the 1% offset flow strength (1% FS).
References [1] T.
Lee, “Effect of austenite grain size on martensitic transformation of a low alloy steel,” Materials Science Forum, vol. 475–479, 2005, pp. 3169–3172
Online since: October 2022
Authors: Jian Zhang, Yuan Yuan Guo, Yu Shi Luo, Mai Zhang, Chen Guang Liu, Jian Wei Xu
Dendrite spacing is an important feature of as cast structure, and the Hunt and Kurz-Fisher models[3,4] indicate that the primary dendrite spacing λ1 is proportional to (GL-1/2·VS-1/4), i.e. the λ1 decreases when the V increases.
The nominal composition of the alloy is shown in Table 1.
References [1] Jin Tao, LI Jinguo, ZHAO Nairen, et al.
Materials Science & Engineering A, Structural Materials: Properties, Microstructure and Processing, 2008, 479(1-2):356-364 [9] Paraschiv A., Matache G., Puscasu C..
Acta Metallurgica et Materialia, 1992, 40(1):1-30 [21] Pearson D.D., Lemkey F.D., Kear B.H..
The nominal composition of the alloy is shown in Table 1.
References [1] Jin Tao, LI Jinguo, ZHAO Nairen, et al.
Materials Science & Engineering A, Structural Materials: Properties, Microstructure and Processing, 2008, 479(1-2):356-364 [9] Paraschiv A., Matache G., Puscasu C..
Acta Metallurgica et Materialia, 1992, 40(1):1-30 [21] Pearson D.D., Lemkey F.D., Kear B.H..
Online since: June 2014
Authors: Alejandro Pereira, Javier Martínez, José A. Pérez, Thomas Mathia, Maria Teresa Prado
The material properties are shown in table 1 [19].
Table 1: AISI H13 properties.
Fig. 1: Workpiece and specimen.
Table 3: Values of VBmax Z1 and VBmax Z2 Cycles VRT (cm3) VBmax Z1 (mm) VBmax Z2 (mm) 1 36,9 -0,005 -0,052 2 73,8 -0,015 -0,059 3 110,7 -0,043 -0,062 4 147,6 -0,048 -0,073 5 184,5 -0,051 -0,074 6 221,4 -0,064 -0,081 7 258,3 -0,071 -0,091 8 295,2 -0,123 -0,212 9 332,1 -0,196 -0,352 10 369 -0,216 -0,447 11 405,9 -0,251 -0,512 12 442,8 -0,345 -0,568 13 479,7 -0,58 -0,577 14 516,6 -0,806 -0,687 Measurements of axial flank wear, VBmax, in all the cycles, were obtained, as can be observed in Table 3.
References [1] H.
Table 1: AISI H13 properties.
Fig. 1: Workpiece and specimen.
Table 3: Values of VBmax Z1 and VBmax Z2 Cycles VRT (cm3) VBmax Z1 (mm) VBmax Z2 (mm) 1 36,9 -0,005 -0,052 2 73,8 -0,015 -0,059 3 110,7 -0,043 -0,062 4 147,6 -0,048 -0,073 5 184,5 -0,051 -0,074 6 221,4 -0,064 -0,081 7 258,3 -0,071 -0,091 8 295,2 -0,123 -0,212 9 332,1 -0,196 -0,352 10 369 -0,216 -0,447 11 405,9 -0,251 -0,512 12 442,8 -0,345 -0,568 13 479,7 -0,58 -0,577 14 516,6 -0,806 -0,687 Measurements of axial flank wear, VBmax, in all the cycles, were obtained, as can be observed in Table 3.
References [1] H.
Online since: January 2012
Authors: Esmaeel Saberi, Isa Nakhai Kamal Abadi, Mohsen Sadegh Amalnik, Mahdi Mohammadzadeh
Beginning from an expected value, in the fixed interval of ∆t, either V increases to uV with probability q or it decreases to dV with complementary probability 1-q, so that u>1 and d<1 ,where rf is the discount rate without risk.
(4) with probabilities q and 1-q, respectively as shown in Fig . 1.
(5) C=(pcu + (1 - p) cd)/(1 + rf)
References [1] T.
Bourgault, “Dimensions of uncertainty and their moderating effect on new product development project performance,” R&D Management, vol. 38, issue. 5, pp. 468-479, Nov. 2008
(4) with probabilities q and 1-q, respectively as shown in Fig . 1.
(5) C=(pcu + (1 - p) cd)/(1 + rf)
References [1] T.
Bourgault, “Dimensions of uncertainty and their moderating effect on new product development project performance,” R&D Management, vol. 38, issue. 5, pp. 468-479, Nov. 2008
Online since: September 2017
Authors: Alexander N. Kalitaev, Vlasta D. Tutarova, Aleksey N. Shapovalov
Table 1.
Steel grades Section, mm Macrostructure defects, severity* AP CS SSC LNU 35GS 130×130 0-3.0 / 0.5 0-2.0 / 0.7 0-2.5 / 0.82 0-3,0 / 1,48 150×150 0-3.0 / 0.71 0-2.0 / 0.75 0-3.0 / 0.96 0,5-4,0 / 2,04 25G2S 130×130 0-3.0 / 0.5 0-1.5 / 0.21 0-1.5 / 0.6 0-3,0 / 1,43 150×150 0-4.0 / 0.6 0-2.0 / 0.57 0-3.0 / 0.84 0-3,0 / 1,29 St3sp 130×130 0-3.0 / 0.4 0-2.5 / 0.18 0-4.0 / 0.67 0,5-3,5 / 1,45 150×150 0-4.0 / 0.85 0-2.0 / 0.45 0-3.5 / 0.92 0-4,0 / 1,8 * numerator – variation range, denominator – average value Acceptable value of the defect 3.0 2.0 1.0 3.0 The data on the billet macrostructure quality prove, that the average severity of all defects does not exceed the acceptable values.
a b c Fig. 1.
References [1] A.N.
Yang, The Formation and Occurrence of Non-Metallic Inclusions of Si-Doped Steel during Continuous Casting, Key Engineering Materials, 479 (2011) 13-21
Steel grades Section, mm Macrostructure defects, severity* AP CS SSC LNU 35GS 130×130 0-3.0 / 0.5 0-2.0 / 0.7 0-2.5 / 0.82 0-3,0 / 1,48 150×150 0-3.0 / 0.71 0-2.0 / 0.75 0-3.0 / 0.96 0,5-4,0 / 2,04 25G2S 130×130 0-3.0 / 0.5 0-1.5 / 0.21 0-1.5 / 0.6 0-3,0 / 1,43 150×150 0-4.0 / 0.6 0-2.0 / 0.57 0-3.0 / 0.84 0-3,0 / 1,29 St3sp 130×130 0-3.0 / 0.4 0-2.5 / 0.18 0-4.0 / 0.67 0,5-3,5 / 1,45 150×150 0-4.0 / 0.85 0-2.0 / 0.45 0-3.5 / 0.92 0-4,0 / 1,8 * numerator – variation range, denominator – average value Acceptable value of the defect 3.0 2.0 1.0 3.0 The data on the billet macrostructure quality prove, that the average severity of all defects does not exceed the acceptable values.
a b c Fig. 1.
References [1] A.N.
Yang, The Formation and Occurrence of Non-Metallic Inclusions of Si-Doped Steel during Continuous Casting, Key Engineering Materials, 479 (2011) 13-21
Online since: December 2013
Authors: Yan Qiu Lu, E Ping Song, Sheng Gao Cheng, Yi Sun
Synthesize Enshi City gets 1 points, Lichuan 2 points, others each 3 points
In other parts which only have a few local park each gets 1 point
(See table 2) Table 2 Score of Urban City Environmental Beauty Degree Score Enshi City Lichuan Jianshi Laifeng Xianfeng B1 5 5 4.5 5 5 B2 5 5 5 5 4.5 B3 2.5 2.5 2.5 2 2.5 B4 1 2 3 3 3 B5 5 4 1 1 1 B6 2.5 2.5 0.5 0.5 0.5 B 21 21 16.5 16.5 16.5 (7) Score analysis evaluation: table 2 shows the city beautiful environment degree of small and medium-sized cities in Enshi City, there is on city level correlation between medium cities and small cities.
Highway goes through all the cities, each gets 1 point.
References [1] Yang Lu.
In other parts which only have a few local park each gets 1 point
(See table 2) Table 2 Score of Urban City Environmental Beauty Degree Score Enshi City Lichuan Jianshi Laifeng Xianfeng B1 5 5 4.5 5 5 B2 5 5 5 5 4.5 B3 2.5 2.5 2.5 2 2.5 B4 1 2 3 3 3 B5 5 4 1 1 1 B6 2.5 2.5 0.5 0.5 0.5 B 21 21 16.5 16.5 16.5 (7) Score analysis evaluation: table 2 shows the city beautiful environment degree of small and medium-sized cities in Enshi City, there is on city level correlation between medium cities and small cities.
Highway goes through all the cities, each gets 1 point.
References [1] Yang Lu.
Online since: March 2014
Authors: Rebecka Brommesson, Magnus Hörnqvist, Magnus Ekh
However, the material response closely follows
experimental results for later cycles as can be seen in Fig. 1.
The calibrated material parameter sets are given in Table 1.
Rϵ E [GPa] σy [MPa] H1 [GPa] B∞,1 [MPa] H2 [GPa] B∞,2 [MPa] H3 [GPa] B∞,3 [MPa] 0 90 359 643 211 14 260 36 86300 0.6 89 300 479 264 3.73 424 10.6 ∞0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -400 -200 0 200 400 600 800 1000 N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0 R = 0.6 (a) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -400 -200 0 200 400 600 800 (b) N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0, cycle 2 R = 0, cycle 100 1.8 2.0 2.2 2.4 2.6 2.8 3.0 -400 -200 0 200 400 600 800 (c) N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0.6, cycle 2 R = 0.6, cycle 100 Fig. 1: Stress-strain response for two high strain specimens, one at Rϵ = 0 and one for Rϵ = 0.6.
Individual stress-strain loops corresponding to cycles 2 and 100 are shown in Figs. 1(b) and 1(c).
References [1] K.
The calibrated material parameter sets are given in Table 1.
Rϵ E [GPa] σy [MPa] H1 [GPa] B∞,1 [MPa] H2 [GPa] B∞,2 [MPa] H3 [GPa] B∞,3 [MPa] 0 90 359 643 211 14 260 36 86300 0.6 89 300 479 264 3.73 424 10.6 ∞0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -400 -200 0 200 400 600 800 1000 N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0 R = 0.6 (a) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -400 -200 0 200 400 600 800 (b) N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0, cycle 2 R = 0, cycle 100 1.8 2.0 2.2 2.4 2.6 2.8 3.0 -400 -200 0 200 400 600 800 (c) N o m in a l s tre s s (M P a ) Extensometer strain (%) R = 0.6, cycle 2 R = 0.6, cycle 100 Fig. 1: Stress-strain response for two high strain specimens, one at Rϵ = 0 and one for Rϵ = 0.6.
Individual stress-strain loops corresponding to cycles 2 and 100 are shown in Figs. 1(b) and 1(c).
References [1] K.