Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: July 2014
Authors: Naznin Sultana, Nobuhiro Nakamura, Shigehisa Hirose, Koichi Kutsuzawa, Kakon Nag, Toshihiro Akaike
Introduction
Congenital heart diseases (CHD) are collectively one of the major causes of morbidity in newborn with a prevalence of 1% among the total live births [1].
Fig. 1.
References [1] G.
J 397 (2006) 1-14
Sedmera, The effect of connexin40 deficiency on ventricular conduction system function during development, Cardiovasc Res 95 (2012) 469-479
Fig. 1.
References [1] G.
J 397 (2006) 1-14
Sedmera, The effect of connexin40 deficiency on ventricular conduction system function during development, Cardiovasc Res 95 (2012) 469-479
Online since: April 2021
Authors: Sergiy V. Divinski, Alexander V. Pokoev, Julia V. Osinskaya, François Jomard, Cécilie Duhamel, Aloke Paul, Daniel Gärtner, Vladimir A. Esin, Lisa Belkacemi, Andrey A. Fedotov, Juliana Schell
This comparison substantiates
the applicability of the novel approach even to the systems with a large variation of the molar volume
with the composition.a)
8 0 8 5 9 0 9 5 1 0 0
1 0 - 1 5
1 0 - 1 4
1 0 - 1 3
1 0 - 1 2
D * , D ( m 2 / s )
0 G a - 2 4 G a
1 6 G a - 2 4 G a
0 G a - 1 6 G a
A t o m i c P e r c e n t o f F e
D D *
~
~
b)
7 5 8 0 8 5 9 0 9 5 1 0 0
1 0 - 1 5
1 0 - 1 4
1 0 - 1 3
1 0 - 1 2
D ( m 2 / s )
a t . % F e
D G a ( f r o m i n t r i n s i c d i f f u s i o n )
D F e ( e n d - m e m b e r s ) D~D F e
*
D G a*
**
Fig. 15: Interdiffusion in the Fe-Ga system: a) Fe tracer (D∗) and interdiffusion ( ¯D) coefficients determined
from there different Fe-Ga couples (the Ga content in the end-members is indicated). b) Tracer
diffusion coefficients of Ga estimated using the Darken-Manning relation (dashed-dotted line), the
measured interdiffusion coefficients (dashed line) and the Fe tracer diffusion coefficients (solid line)
in comparison
a) 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 y ( µm ) R e l a t i v e c o n c e n t r a t i o n ( a r b . u n i t s ) y 2 ( 1 0 - 1 1 m 2 ) 1 2 3 4 5 1 2 0 5 K 1 1 7 6 K 1 1 1 5 K b) 7 8 9 1 0 - 1 9 1 0 - 1 8 1 0 - 1 7 1 0 - 1 6 1 0 - 1 5 1 0 - 1 4 T ( K ) D v ( m 2 / s ) T - 1 ( 1 0 - 4 K - 1 ) N i d i f f u s i o n i n N i A l 1 5 0 0 1 4 0 0 1 3 0 0 1 2 0 0 1 1 0 0 Fig. 16: Diffusion investigation using SIMS: (a) penetration profiles measured by SIMS and (b) the Arrhenius diagram for Ni diffusion in binary B2-ordered NiAl after Frank et al. [105].
The value of the diffraction angle θ; the values of θ about 90� improves the detection of small displacements of the diffraction line;a) I n t e n s i t y 2 θ 0 14 1 0 b) 8 9 1 0 1 0 - 1 7 1 0 - 1 6 1 0 - 1 5 1 0 - 1 4 1 0 - 1 3 1 0 - 1 2 T ( K ) D ( m 2 / s ) T - 1 ( 1 0 - 4 K - 1 ) 1 3 0 0 1 2 0 0 1 1 0 0 1 0 0 0 Fig. 24: (a) The X-ray intensity near the Cu Bragg peak for different annealing treatments after [124] (the values of the diffusion distance, √Dvt, are indicated in microns).
References [1] A.
Vol. 479 (2009) pp. 157-160
a) 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 y ( µm ) R e l a t i v e c o n c e n t r a t i o n ( a r b . u n i t s ) y 2 ( 1 0 - 1 1 m 2 ) 1 2 3 4 5 1 2 0 5 K 1 1 7 6 K 1 1 1 5 K b) 7 8 9 1 0 - 1 9 1 0 - 1 8 1 0 - 1 7 1 0 - 1 6 1 0 - 1 5 1 0 - 1 4 T ( K ) D v ( m 2 / s ) T - 1 ( 1 0 - 4 K - 1 ) N i d i f f u s i o n i n N i A l 1 5 0 0 1 4 0 0 1 3 0 0 1 2 0 0 1 1 0 0 Fig. 16: Diffusion investigation using SIMS: (a) penetration profiles measured by SIMS and (b) the Arrhenius diagram for Ni diffusion in binary B2-ordered NiAl after Frank et al. [105].
The value of the diffraction angle θ; the values of θ about 90� improves the detection of small displacements of the diffraction line;a) I n t e n s i t y 2 θ 0 14 1 0 b) 8 9 1 0 1 0 - 1 7 1 0 - 1 6 1 0 - 1 5 1 0 - 1 4 1 0 - 1 3 1 0 - 1 2 T ( K ) D ( m 2 / s ) T - 1 ( 1 0 - 4 K - 1 ) 1 3 0 0 1 2 0 0 1 1 0 0 1 0 0 0 Fig. 24: (a) The X-ray intensity near the Cu Bragg peak for different annealing treatments after [124] (the values of the diffusion distance, √Dvt, are indicated in microns).
References [1] A.
Vol. 479 (2009) pp. 157-160
Online since: March 2008
Authors: Jose A. Sanz-Herrera, J.M. García-Aznar, Manuel Doblaré
Doblaré
1
1
Group of Structural Mechanics and Materials Modelling.
Fig 1.
These models are interested not only in the prediction of the long-term behaviour 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 ( C H 1 2 + 2 C H 4 4 ) / C H 1 1 F L o s s o f I s o t r o p y of bone under loading, but also in its rate of adaptation and the specific role of bone cells in each stage of the mechanosensation and adaptation processes.
J Biomech, 34(4):471-479, 2001
Vol. 1 (1995).
Fig 1.
These models are interested not only in the prediction of the long-term behaviour 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 ( C H 1 2 + 2 C H 4 4 ) / C H 1 1 F L o s s o f I s o t r o p y of bone under loading, but also in its rate of adaptation and the specific role of bone cells in each stage of the mechanosensation and adaptation processes.
J Biomech, 34(4):471-479, 2001
Vol. 1 (1995).
Online since: June 2015
Authors: Ramneek Kaur, Jagdish Kaur, S.K. Tripathi, Shivani Bharti, Isha Gawri
Industrial Applications
7.1.1.
Fig. 1.
MRI measurements showed that Gd2O3 particles with a diameter of 59 nm have relaxation rates of R1 = 5.1 s-1 mM-1 and R2 = 15 s-1 mM-1.
Alloys Compd. 479 (2009) 791-796
Express 1 (2014) 026104 (1-13)
Fig. 1.
MRI measurements showed that Gd2O3 particles with a diameter of 59 nm have relaxation rates of R1 = 5.1 s-1 mM-1 and R2 = 15 s-1 mM-1.
Alloys Compd. 479 (2009) 791-796
Express 1 (2014) 026104 (1-13)