Fabrication and Characterization of Banana Fiber Reinforced Unsaturated Polyester Resin Based Composites

Article Preview

Abstract:

Concerning the importance of composite material for multi-purpose applications, an attempt has been taken to synthesize composites using natural fiber with unsaturated polyester resin. Since the use of synthetic polymer plays a key role in polluting the environment, we have used natural fiber (banana fiber) as an alternative source. Our approach dealt with the preparation of reinforced composites by hand lay-up technique using 20 % banana fiber (by weight) as reinforcing materials. Several techniques were applied to characterize synthesized composites e.g. universal testing machine (UTM), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). UTM facilitated the measurement of the tensile strength (TS), tensile modulus (TM), elongation at break (EB), bending strength (BS), and bending modulus (BM) while functional groups were confirmed by FT-IR and the morphology of the composites was investigated by SEM. Observed results revealed that the TS, TM, BS, and BM followed an increasing fashion of 100%, 53%, 75%, and 55% respectively with respect to the matrix materials. On the other hand, the EB of the composite reduced drastically by 50%. Hence, higher mechanical properties were obtained for the banana fiber reinforced composites (BFRC) than the unsaturated polyester resin (UPR) matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-92

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hoque, M.B., Hossain, M.S. and Khan, R.A., 2019. Study on Tensile, Bending and Water Uptake Properties of Sugarcane Bagasse Fiber Reinforced Polypropylene Based Composite. Journal of Biomaterials, 3(1), pp.18-23.

DOI: 10.11648/j.jb.20190301.13

Google Scholar

[2] Hoque, M.B., Hossain, M.S., Nahid, A.M., Bari, S. and Khan, R.A., 2018. Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. In Nano Hybrids and Composites (Vol. 21, pp.31-42). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/nhc.21.31

Google Scholar

[3] Rahaman, M.N., Hossain, M.S., Razzak, M., Uddin, M.B., Chowdhury, A.S. and Khan, R.A., 2019. Effect of dye and temperature on the physico-mechanical properties of jute/PP and jute/LLDPE based composites. Heliyon, 5(6), p.e01753.

DOI: 10.1016/j.heliyon.2019.e01753

Google Scholar

[4] Shahriar Kabir, M., Hossain, M.S., Mia, M., Islam, M., Rahman, M., Hoque, M.B. and Chowdhury, A.M., 2018. Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites. In Nano Hybrids and Composites (Vol. 23, pp.24-38). Trans Tech Publications.

DOI: 10.4028/www.scientific.net/nhc.23.24

Google Scholar

[5] Gay, D., 2014. Composite materials: design and applications. CRC press.

Google Scholar

[6] Zaman, H.U., Khan, M.A. and Khan, R.A., 2012. Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites, 33(7), pp.1077-1084.

DOI: 10.1002/pc.22184

Google Scholar

[7] Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K. and Yogesha, B., 2016. Applications of natural fibers and its composites: An overview. Natural Resources, 7(03), p.108.

DOI: 10.4236/nr.2016.73011

Google Scholar

[8] Fahim, I.S. and Elhaggar, S.M., 2012. Reinforcement of plastic waste with treated natural fibers. Natural Resources, 3(01), p.6.

DOI: 10.4236/nr.2012.31002

Google Scholar

[9] Fahim, I.S., Elhaggar, S.M. and Elayat, H., 2012. Experimental investigation of natural fiber reinforced polymers. Materials Sciences and Applications, 3(02), p.59.

DOI: 10.4236/msa.2012.32009

Google Scholar

[10] Westman, M.P., Fifield, L.S., Simmons, K.L., Laddha, S. and Kafentzis, T.A., 2010. Natural fiber composites: a review (No. PNNL-19220). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

DOI: 10.2172/1178934

Google Scholar

[11] Mori, S., Tenazoa, C., Candiotti, S., Flores, E. and Charca, S., 2018. Assessment of ichu fibers extraction and their use as reinforcement in composite materials. Journal of Natural Fibers, pp.1-16.

DOI: 10.1080/15440478.2018.1527271

Google Scholar

[12] Karbhari, V.M. and Seible, F., 2000. Fiber Reinforced composites–advanced materials for the renewal of civil infrastructure. Applied Composite Materials, 7(2-3), pp.95-124.

Google Scholar

[13] Gowda, T.M., Naidu, A.C.B. and Chhaya, R., 1999. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Composites Part A: applied science and manufacturing, 30(3), pp.277-284.

DOI: 10.1016/s1359-835x(98)00157-2

Google Scholar

[14] Khan, R.A., Haque, M.E., Huq, T., Khan, M.A., Zaman, H.U., Fatema, K.J., Al-Mamun, M.D., Khan, A. and Ahmad, M.A., 2010. Studies on the relative degradation and interfacial properties between jute/polypropylene and jute/natural rubber composites. Journal of Thermoplastic Composite Materials, 23(5), pp.665-681.

DOI: 10.1177/0892705709353723

Google Scholar

[15] Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K. and Tripathy, S.S., 2003. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 63(10), pp.1377-1385.

DOI: 10.1016/s0266-3538(03)00084-8

Google Scholar

[16] Rahaman, M.N., Hossain, M.S., Razzak, M., Uddin, M.B., Chowdhury, A.S. and Khan, R.A., 2019. Effect of dye and temperature on the physico-mechanical properties of jute/PP and jute/LLDPE based composites. Heliyon, 5(6), p.e01753.

DOI: 10.1016/j.heliyon.2019.e01753

Google Scholar

[17] Mohammed, L., Ansari, M.N., Pua, G., Jawaid, M. and Islam, M.S., 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, (2015).

DOI: 10.1155/2015/243947

Google Scholar

[18] Taj, S., Munawar, M.A. and Khan, S., 2007. Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences, 44(2), p.129.

Google Scholar

[19] Chand, N., Sood, S., Rohatgi, P.K. and Stayanarayana, K.G., 1984. Resources, structure, properties and uses of natural fibers of Madhya Pradesh. Journal of Scientific and Industrial Research, 43(9), pp.489-499.

Google Scholar

[20] Flemming, M., Ziegmann, G. and Roth, S., 1995. Fasern und Matrices. Berlin, Heidelberg: Springer Verlag.

Google Scholar

[21] Kallapur, S.K., 1962. Bark and Leaf Fibres of India. Directorate of Publicity, KVIC, Irla Road, Vile Parle, Bombay.

Google Scholar

[22] Dinh Vu, N., Thi Tran, H. and Duy Nguyen, T., 2018. Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw. International Journal of Polymer Science, 2018. Li, L.F., Wang, H.Y., Zhang, C., Wang, X.F., Shi, F.X., Chen, W.N. and Ge, X.J., 2013. Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One, 8(11), p.e80502.

DOI: 10.1155/2018/1813847

Google Scholar

[23] Mostert, D., Molina, A.B., Daniells, J., Fourie, G., Hermanto, C., Chao, C.P., Fabregar, E., Sinohin, V.G., Masdek, N., Thangavelu, R. and Li, C., 2017. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. PloS one, 12(7), p.e0181630.

DOI: 10.1371/journal.pone.0181630

Google Scholar

[24] Gon, D., Das, K., Paul, P. and Maity, S., 2012. Jute composites as wood substitute. International Journal of Textile Science, 1(6), pp.84-93.

DOI: 10.5923/j.textile.20120106.05

Google Scholar

[25] Li, X., Tabil, L.G. and Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[26] Chiao, M. and Chiao, J.C., 2011. Biomaterials for MEMS. Jenny Stanford Publishing.

Google Scholar

[27] Venkateshwaran, N. and Elayaperumal, A., 2010. Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 29(15), pp.2387-2396.

DOI: 10.1177/0731684409360578

Google Scholar

[28] Joseph, K., Tolêdo Filho, R.D., James, B., Thomas, S. and Carvalho, L.H.D., 1999. A review on sisal fiber reinforced polymer composites. Revista Brasileira de Engenharia Agrícola e Ambiental, 3(3), pp.367-379.

DOI: 10.1590/1807-1929/agriambi.v3n3p367-379

Google Scholar

[29] Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A Brief Review of Jute Fibre and Its Composites. Materials Today: Proceedings, 5(14), pp.28427-28437.

DOI: 10.1016/j.matpr.2018.10.129

Google Scholar

[30] Sahadat Hossain, M., Chowdhury, A.S. and Khan, R.A., 2017. Effect of disaccharide, gamma radiation and temperature on the physico-mechanical properties of jute fabrics reinforced unsaturated polyester resin-based composite. Radiation Effects and Defects in Solids, 172(5-6), pp.517-530.

DOI: 10.1080/10420150.2017.1351442

Google Scholar

[31] Khan, R.A., Salmieri, S., Dussault, D., Sharmin, N. and Lacroix, M., 2012. Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone). Journal of Applied Polymer Science, 123(3), pp.1690-1697.

DOI: 10.1002/app.34655

Google Scholar

[32] Khan, R.A., Khan, M.A., Zaman, H.U., Pervin, S., Khan, N., Sultana, S., Saha, M. and Mustafa, A.I., 2010. Comparative studies of mechanical and interfacial properties between jute and E-glass fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 29(7), pp.1078-1088.

DOI: 10.1177/0731684409103148

Google Scholar

[33] Khan, R.A., Khan, M.A., Khan, A.H. and Hossain, M.A., 2009. Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites. Radiation Physics and Chemistry, 78(11), pp.986-993.

DOI: 10.1016/j.radphyschem.2009.06.011

Google Scholar

[34] Huq, T., Khan, A., Hossain, F.M., Akter, T., Zaman, H.U., Aktar, N., Tuhin, M.O., Islam, T. and Khan, R.A., 2013. Gamma-irradiated jute/polypropylene composites by extrusion molding. Composite Interfaces, 20(2), pp.93-105.

DOI: 10.1080/15685543.2013.762741

Google Scholar

[35] Khan, R.A., Salmieri, S., Dussault, D., Sharmin, N. and Lacroix, M., 2012. Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone). Journal of Applied Polymer Science, 123(3), pp.1690-1697.

DOI: 10.1002/app.34655

Google Scholar

[36] Sahadat Hossain, M., Uddin, M.B., Razzak, M., Sarwaruddin Chowdhury, A.M. and Khan, R.A., 2017. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose). Radiation Effects and Defects in Solids, 172(11-12), pp.904-914.

DOI: 10.1080/10420150.2017.1417409

Google Scholar

[37] Parida, C., Dash, S.K. and Pradhan, C., 2014. FTIR and Raman studies of cellulose fibers of luffa cylindrica. Open Journal of Composite Materials, 5(01), p.5.

DOI: 10.4236/ojcm.2015.51002

Google Scholar