Combinatorial Synthesis and Evaluation of Vanadium Oxide Films

Article Preview

Abstract:

Combinatorial technology is a powerful tool for new material exploration. La1-xCaxVO3 composition-spread films were fabricated by combinatorial pulsed laser deposition and their thermoelectric properties were evaluated paralelly by the multi-channel thermoelectric measurement system. Concurrent X-ray analysis verified the formation of solid soluted films in the full composition range (0≤x≤1) as judged from the linear variation of the lattice constants. Growth conditions of LaVO3 films were optimized. Good crystallinity of LaVO3 film was obtained at 800°C, and the power factor of 0.6 µW/cm K2 was achieved. The effects of oxygen content and the substitutions of Ca and Ce ions on TE properties of were also analysed respectively. Large TE properties in vanadium oxide system can be expected with the change of vanadium ion valence from 3+ to 2+. In La1-xCexVO3(0≤x≤1) system, Ce ion takes 3+ although Ce4+ is stable in theory.

You have full access to the following eBook

Info:

Periodical:

Pages:

1071-1076

Citation:

Online since:

December 2011

Authors:

Export:

Share:

Citation:

[1] M.J. Plunkett, J.A. Ellman, Sci. Am. 276 (1997) 68.

Google Scholar

[2] H. Koinuma, H.N. Aiyer, Y. Matsumoto, Sci. Tech. Advan. Mater. 1(2000) 1–10.

Google Scholar

[3] X.D. Xiang, X.Sun, G. Briceno, Y. Lou, K. Wang, H. Chang, W.G. Wallac-Freedman, S. Chen, P.G. Schultz, Science 268 (1995) 1738.

Google Scholar

[4] K.Fujimoto, K.Onoda, M.Sato, H.Matsuo , Mater. Sci. Eng. A 475(2008)52

Google Scholar

[5] R.Lobel, S.Thienhaus, A.Savan, A.Ludwig, Mater. Sci. Eng. A 481-482(2008)151

Google Scholar

[6] U.S. Joshi, K.Itaka, Y.Matsumoto, H.Koinuma, Joural of.Magnetism and Magnetic Marerials, 321(2009)3595

Google Scholar

[7] C.B. Satterthwaite Jr., R.W. Ure, Phys. Rev. 108 (1957) 1164–1170.

Google Scholar

[8] D.M. Rowe, V.S. Shukla, J. Appl. Phys. 52 (1981) 7421–7426.

Google Scholar

[9] J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kuman, D.S. Beers,J. Appl. Phys. 35 (1964) 2899.

Google Scholar

[10] I. Terasaki, Y. sasago, K. Uchionkura, Phys. Rev. B 56 (1997) R12685–R12687.

Google Scholar

[11] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Phys. Rev.B 60 (1999) 10580–10583.

Google Scholar

[12] Xuebin Zhu, Yuping Sun, Hechang Lei, J.Appl.Phys.102(2007)103519

Google Scholar

[13] T.Sun, J.Ma, Q.Y. Yan, Journal of CrystalGrowth 311(2009)4123

Google Scholar

[14] H.Ohta, K.Sugiura, K. Koumoto, Inorg. Chem,47(2008)8429

Google Scholar

[15] S.Wang, M.Chen, L.He , J.Phys.D: Appl.Phys.42(2009)045410

Google Scholar

[16] W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62 (2000) 6869.

Google Scholar

[17] V.G. Zubkov, et al., Sov. Phys. Solid State 15 (1973) 1079.

Google Scholar

[18] A.V. Mahajan, D.C. Johnston, D.R. Torgeson, F. Borsa, Phys. Rev. B 46 (1992) 10966–10972.

Google Scholar

[19] F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji, Y. Tokura, Phys. Rev. B 52 (1995) R2221–R2224.

Google Scholar

[20] P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S-W.Cheong, HTakagi, C.S. Oglesby, B. Batlogg, J. Solid, State Chem.106 (1993) 253–270.

DOI: 10.1006/jssc.1993.1285

Google Scholar

[21] M. Kestigian, J.G. Dickinson, R. Ward, J. Am. Chem. Soc. 79 (1957) 5598.

Google Scholar

[22] T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T.Koida, T. Hasegawa, Y. Tokura, H. Koinuma, Appl. Phys. Lett. 77 (2000) 3426–3428.

DOI: 10.1063/1.1326847

Google Scholar

[23] K. Omote, T. Kikuchi, J. Harada, M. Kawasaki, A. Ohtomo, M.Ohtani, T. Ohnishi, D. Komiyama, H. Koinuma, Proc. SPIE 3941(2000) 84–91.

DOI: 10.1117/12.385416

Google Scholar

[24] K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, H.Koinuma, J. Therm. Anal. Cal. 69 (2002) 1051–1058.

DOI: 10.1023/a:1020657401053

Google Scholar

[25] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70 (1998)1039–1263.

Google Scholar

[26] H.C. Nguyen, J.B. Goodenough, Phys. Rev. B 52 (1995)8776–8787.

Google Scholar