Adaptive State Feedback Control of Electromagnetic Levitation System for Uncertain Ball Mass

Article Preview

Abstract:

For the last several decades, many results have been presented for controlling nonlinear systems that have parameter uncertainty. In this paper, we propose an adaptive state feedback controller based on input-output feedback linearization for electromagnetic levitation system(EMS) with unknown ball mass. We analytically show the regulation of the controlled electromagnetic levitation system by the proposed adaptive state feedback controller. We show the experiment results of electromagnetic levitation system and where there is uncertain ball mass.

You have full access to the following eBook

Info:

[1] A. Isidori, Nonlinear control systems, 2nd ed. New York: Springer-Verlag, (1989).

Google Scholar

[2] N. B. Almutaiti, and M. Zribi, Sliding mode control of a magnetic levitation system, Springer press Inc., (2004).

Google Scholar

[3] C.I. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems, IEEE Trans. on Automat. Contr., vol. 36, no. 10, pp.1122-1137, (1991).

DOI: 10.1109/9.90226

Google Scholar

[4] H. -L. Choi and J. -T. Lim, Adaptive controller for feedback linearizable system using diffeomorphism, KACC 2000, Yongin, p.35. 1-35. 3, (2000).

Google Scholar

[5] H. -L. Choi and J. -T. Lim, Output feedback stabilization for a class of Lipschitz nonlinear systems, IEICE Trans. Fundamentals, vol. E88-A, no. 2, pp.602-605, (2005).

DOI: 10.1093/ietfec/e88-a.2.602

Google Scholar

[6] E. B. Kosmatopoulos and P. A. Ioannou, A switching adaptive controller for feedback linearizable systems, IEEE Trans. on Automat. Contr., vol. 44, no. 4, pp.742-750. (1999).

DOI: 10.1109/9.754811

Google Scholar

[7] H.K. Khalil, Nonlinear system, 3rd, Prentice Hall Inc., (2002).

Google Scholar

[8] P. K. Sinha, Electromagnetic Suspension: Dynamics & Control, Peter Peregriunus Ltd., London, (1987).

Google Scholar

[9] R. Marino and P. Tomei, Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, Automatica, vol. 29, no. 1, pp.181-189, (1993).

DOI: 10.1016/0005-1098(93)90181-r

Google Scholar

[10] Quanser, Maglev user manuals, (2008).

Google Scholar