Design of a 30 nm Germanium FinFET by Parameter Optimization

Article Preview

Abstract:

Germanium (Ge) is envisioned as a suitable channel candidate for field-effect transistors (FET). Properties of Ge such as high carrier mobility, compatibility with Si and adaptability with high-k materials makes it comparable to silicon. This paper presents a detailed design of a 30 nm Ge based FinFET by parameter optimization using Silvaco software. Poisson and Schrodinger equation is used to come up with an analytical quantum model. The quantum model is developed based on theory of a double gate (DG) FET but the final design is a trigate (TG) device since they are more scalable. The quantum attributes of DG MOSFET are acquired by adopting the coupled Poisson–Schrodinger equation with the aid of the variational approach. The ratio of channel length (LC) to fin height (Hfin) to fin thickness (tfin) is 4:2:1. The channel length is taken as the gate length (LG) although they are slightly differ mathematically due to side diffusion of the implanted ions. Simulation results show that physical parameters such as dimensions influence electrical characteristics of the device such as threshold voltage (VTH). Much focus is on optimization of the on/off current ratio (ION/OFF) and VTH performances. ION/OFF 106 is achieved at carrier concentration in the range 1 × 1018 nd 1.22 × 1018 and in this scenario, VTH = 0.4V . Systematical investigation is presented using IV characteristics to demonstrate the sensitivity or how critical design parameters of Ge FinFET are to the device’s figure of merits. Device performs well at low voltages but breaks down at higher drain voltages (VDS 4V). Gate source voltages (VGS) range between 0.05VVGS 1V and conductance is dependent on it. Effects of DIBL, which is around 0.031, and velocity saturation are studied to determine how they can be suppressed during the design process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-118

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Bohr and I. A. Young, Cmos scaling trends and beyond,, IEEE Micro, vol. 37, no. 6, pp.20-29, (2017).

DOI: 10.1109/mm.2017.4241347

Google Scholar

[2] W. M. Holt, 1.1 moore's law: A path going forward,, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp.8-13, (2016).

DOI: 10.1109/isscc.2016.7417888

Google Scholar

[3] M. Muhamad, S. Lokman, and H. Hussin, Optimization in fabricating 90nm NMOS transistors using Silvaco,, in SCOReD2009 - Proceedings of 2009 IEEE Student Conference on Research and Development, pp.258-261, (2009).

DOI: 10.1109/scored.2009.5443057

Google Scholar

[4] R. Granzner, Z. Geng, W. Kinberger, and F. Schwierz, Mosfet scaling: Impact of twodimensional channel materials,, in 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.466-469, (2016).

DOI: 10.1109/icsict.2016.7998953

Google Scholar

[5] M. Ehteshamuddin, S. A. Loan, and M. Rafat, Planar junctionless silicon-on-insulator transistor with buried metal layer,, IEEE Electron Device Letters, vol. 39, no. 6, pp.799-802, (2018).

DOI: 10.1109/led.2018.2829915

Google Scholar

[6] S. Roy, H. Ramiah, A. W. Reza, C. C. Lim, and E. M. Ferrer, Design of a MEMS-Based oscillator using 180nm CMOS technology,, PLoS ONE, (2016).

DOI: 10.1371/journal.pone.0158954

Google Scholar

[7] Q. Xie, Z. Wang, and Y. Taur, Analysis of short-channel effects in junctionless dg mosfets,, IEEE Transactions on Electron Devices, vol. 64, no. 8, pp.3511-3514, (2017).

DOI: 10.1109/ted.2017.2716969

Google Scholar

[8] W. Li, M. D. Brubaker, B. T. Spann, K. A. Bertness, and P. Fay, Gan nanowire mosfet with near-ideal subthreshold slope,, IEEE Electron Device Letters, vol. 39, no. 2, pp.184-187, (2018).

DOI: 10.1109/led.2017.2785785

Google Scholar

[9] Q. Xie, X. Lin, Y. Wang, S. Chen, M. J. Dousti, and M. Pedram, Performance comparisons between 7-nm finfet and conventional bulk cmos standard cell libraries,, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp.761-765, Aug (2015).

DOI: 10.1109/tcsii.2015.2391632

Google Scholar

[10] M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, P. Sarangapani, and G. Klimeck, Optimum high-k oxide for the best performance of ultra-scaled double-gate mosfets,, IEEE Transactions on Nanotechnology, vol. 15, no. 6, pp.904-910, (2016).

DOI: 10.1109/tnano.2016.2583411

Google Scholar

[11] T. Oproglidis, T. Karatsori, S. Barraud, G. Ghibaudo, and C. Dimitriadis, Leakage current conduction in metal gate junctionless nanowire transistors,, Solid-State Electronics, vol. 131, 02 (2017).

DOI: 10.1016/j.sse.2017.02.003

Google Scholar

[12] A. Baidya, T. R. Lenka, and S. Baishya, Mixed-mode simulation and analysis of 3d double gate junctionless nanowire transistor for cmos circuit applications,, Superlattices and Microstructures, vol. 100, pp.14-23, (2016).

DOI: 10.1016/j.spmi.2016.08.028

Google Scholar

[13] Y. Omura, S. Horiguchi, M. Tabe, and K. Kishi, Quantum-mechanical effects on the threshold voltage of ultrathin-soi nmosfets,, IEEE Electron Device Letters, vol. 14, pp.569-571, Dec (1993).

DOI: 10.1109/55.260792

Google Scholar

[14] S. Ghosh and L. Rajan, Zinc oxide thin-film transistor with catalytic electrodes for hydrogen sensing at room temperature,, IEEE Transactions on Nanotechnology, vol. 20, pp.303-310, (2021).

DOI: 10.1109/tnano.2021.3068994

Google Scholar

[15] W. M. Abdelraheem and E. S. Mohamed, The effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation and virulence genes expression," The Journal of Infection in Developing Countries, vol. 15, pp.826-832.

DOI: 10.3855/jidc.13958

Google Scholar

[17] R. C. Hoffmann, S. Sanctis, M. O. Liedke, M. Butterling, A. Wagner, C. Njel, and J. J. Schneider, Zinc oxide defect microstructure and surface chemistry derived from oxidation of metallic zinc: Thin-film transistor and sensor behavior of zno films and rods,, Chemistry - A European Journal, vol. 27, no. 17, pp.5422-5431, (2021).

DOI: 10.1002/chem.202004270

Google Scholar

[18] K. Lu, R. Yao, W. Xu, H. Ning, X. Zhang, G. Zhang, Y. Li, J. Zhong, Y. Yang, and J. Peng, Alloy-electrode-assisted high-performance enhancement-type neodymium-doped indium-zincoxide thin-film transistors on polyimide flexible substrate,, Research, vol. 2021, (2021).

DOI: 10.34133/2021/5758435

Google Scholar

[19] K. Li, Y. Zhang, W. Zhong, X. Deng, X. Yang, H. Chen, and B. Zhang, A new sic split-gate mosfet structure with protruded p-base and the mesa above jfet for improving hf-fom,, in 2019 16th China International Forum on Solid State Lighting 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), pp.29-32, (2019).

DOI: 10.1109/sslchinaifws49075.2019.9019759

Google Scholar

[20] Q. Wang, A. Puntambekar, and V. Chakrapani, Co-adsorption of water and oxygen on gan: Effects of charge transfer and formation of electron depletion layer,, The Journal of Chemical Physics, vol. 147, no. 10, p.104703, (2017).

DOI: 10.1063/1.4991322

Google Scholar

[21] N. Xu, B. Ho, M. Choi, V. Moroz, and T. K. Liu, Effectiveness of stressors in aggressively scaled finfets,, IEEE Transactions on Electron Devices, vol. 59, pp.1592-1598, June (2012).

DOI: 10.1109/ted.2012.2189861

Google Scholar

[22] N. Gehlawat and G. Saini, Random dopant induced threshold voltage variation analysis of asymmetric spacer finfets,, in 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp.953-956, (2017).

DOI: 10.1109/icoei.2017.8300848

Google Scholar

[23] S. Kaundal, S. Kaushal, and A. K. Rana, Performance estimation of junctionless finfet with graded channel design,, in 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp.373-376, (2017).

DOI: 10.1109/ispcc.2017.8269706

Google Scholar

[24] J. Singh, N. Yadava, and R. Chauhan, Impact of doping density on junctionless gate stack fd-soi mosfet for analog/rf application,, in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp.1-4, (2019).

DOI: 10.1109/i2ct45611.2019.9033758

Google Scholar

[25] A. R. Brown, A. Asenov, and J. R. Watling, Intrinsic fluctuations in sub 10-nm double-gate mosfets introduced by discreteness of charge and matter,, IEEE Transactions on Nanotechnology, vol. 1, pp.195-200, Dec (2002).

DOI: 10.1109/tnano.2002.807392

Google Scholar

[26] Z. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, A top-gate gan nanowire metal-semiconductor field effect transistor with improved channel electrostatic control,, Applied Physics Letters, vol. 108, no. 3, p.033101, (2016).

DOI: 10.1063/1.4940197

Google Scholar

[27] A. Kumar, N. Gupta, S. Singh, B. Tiwari, M. M. Tripathi, and R. Chaujar, Carbon nanotube recessed channel (cnt-rc) mosfet for high linearity/ulsi applications,, in TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp.2564-2567, (2019).

DOI: 10.1109/tencon.2019.8929540

Google Scholar

[28] B. Hoefflinger, ITRS: The International Technology Roadmap for Semiconductors. Springer, Berlin, Heidelberg, 10 2011.[29] S. T. Sadasivan, T. E. Ayoob Khan, and S. Hameed, A gaas based metal-interlayer- semiconductor s/d finfet,, in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), pp.1-4, (2018).

DOI: 10.1109/icetietr.2018.8529122

Google Scholar

[30] V. M. Srivastava, Scaling effect of cylindrical surrounding double-gate mosfet: A device beyond 22 nm technology,, in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp.1-5, (2017).

DOI: 10.1109/icaccs.2017.8014562

Google Scholar

[31] D. Lei, K. H. Lee, Y.-C. Huang, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, S. Xu, Y. Wu, C. S. Tan, X. Gong, and Y.-C. Yeo, Enhanced germaniumtin p-channel finfet performance using post-metal anneal,, in 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp.50-52, (2018).

DOI: 10.1109/edtm.2018.8421413

Google Scholar

[32] F. A. Md Rezali, N. A. F. Othman, M. Mazhar, S. Wan Muhamad Hatta, and N. Soin, Performance and device design based on geometry and process considerations for 14/16-nm strained finfets,, IEEE Transactions on Electron Devices, vol. 63, pp.974-981, March (2016).

DOI: 10.1109/ted.2016.2520583

Google Scholar

[33] S. L. Tripathi and R. Mishra, Design of 20 nm finfet structure with round fin corners using side surface slope variation,, Journal of Electron Devices, vol. 18, pp.537-1542, 08 (2013).

Google Scholar

[34] M. Z. Hossain and Q. D. M. Khosru, Threshold voltage roll-off due to channel length reduction for a nanoscale n-channel finfet,, International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS), pp.152-156, (2013).

Google Scholar

[35] P. Rastogi, T. Dutta, S. Kumar, A. Agarwal, and Y. S. Chauhan, Quantum confinement effects in extremely thin body germanium n-mosfets,, IEEE Transactions on Electron Devices, vol. 62, pp.3575-3580, Nov (2015).

DOI: 10.1109/ted.2015.2477471

Google Scholar

[36] V. Manimuthu, S. Yoshida, Y. Suzuki, F. Salleh, M. Arivanandhan, Y. Kamakura, Y. Hayakawa, and H. Ikeda, Seebeck coefficient of ge-on-insulator layers fabricated by direct wafer bonding process,, Advanced Materials Research, vol. 1117, pp.94-97, 05 (2015).

DOI: 10.4028/www.scientific.net/amr.1117.94

Google Scholar

[37] S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, 7-nm finfet cmos design enabled by stress engineering using si, ge, and sn,, IEEE Transactions on Electron Devices, vol. 61, pp.1222-1230, May (2014).

DOI: 10.1109/ted.2014.2311129

Google Scholar

[38] Chapter 5 - bandstructure and related properties,, in Silicon-Germanium Strained Layers and Heterostructures (S. Jain and M. Willander, eds.), vol. 74 of Semiconductors and Semimetals, pp.91-145, Elsevier, (2003).

DOI: 10.1016/s0080-8784(03)80018-2

Google Scholar

[39] X. Lin, B. Zhang, Y. Xiao, H. Lou, L. Zhang, and M. Chan, Analytical current model for longchannel junctionless double-gate mosfets,, IEEE Transactions on Electron Devices, vol. 63, no. 3, pp.959-965, (2016).

DOI: 10.1109/ted.2016.2520558

Google Scholar

[40] S. Chen, Y. Wang, X. Lin, Q. Xie, and M. Pedram, Performance prediction for multiplethreshold 7nm-finfet-based circuits operating in multiple voltage regimes using a cross-layer simulation framework,, in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp.1-2, Oct (2014).

DOI: 10.1109/s3s.2014.7028218

Google Scholar

[41] N. Othman, F. Azhari, S. Hatta, and N. Soin, Optimization of 7 nm strained germanium finfet design parameters using taguchi method and pareto analysis of variance," ECS Journal of Solid State Science and Technology, vol. 7, pp. P161-P169, 01 2018.[42] C. Li, Y. Zhuang, and L. Zhang, "Simulation study on finfet with tri-material gate,, in 2012 IEEE International Conference on Electron Devices and Solid State Circuit, EDSSC 2012, pp.1-3, Dec (2012).

DOI: 10.1149/2.0081804jss

Google Scholar

[43] P. Vimala and N. B. Balamurugan, Modelling the centroid and charge density in double-gate mosfets including quantum effects,, International Journal of Electronics, vol. 100, 09 (2013).

DOI: 10.1080/00207217.2012.743081

Google Scholar

[44] Y. Jing, G. Han, Y. Liu, J. Zhang, and Y. Hao, Phonon limited electron mobility in germanium nfinfets: Fin direction dependence,, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-3, (2018).

DOI: 10.1109/icsict.2018.8565814

Google Scholar

[45] R. G. Winter, Quantum Physics. Textbooks in Science and Mathematics Series, IPI Press, (1993).

Google Scholar

[46] P. Vimala and N. R. Kumar, Comparative analysis of various parameters of si/ge channel trigate mosfet,, Journal of Nano Research, vol. 58, pp.32-39, 09 (2019).

Google Scholar

[47] Z. Xu, J. Wang, Y. Cai, J. Liu, C. Jin, Z. Yang, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, Enhancement mode (e-mode) algan/gan mosfet with 10−13 a/mm leakage current and 1012 on/off current ratio,, IEEE Electron Device Letters, vol. 35, no. 12, pp.1200-1202, (2014).

DOI: 10.1109/led.2014.2360541

Google Scholar