[1]
M. T. Bohr and I. A. Young, Cmos scaling trends and beyond,, IEEE Micro, vol. 37, no. 6, pp.20-29, (2017).
DOI: 10.1109/mm.2017.4241347
Google Scholar
[2]
W. M. Holt, 1.1 moore's law: A path going forward,, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp.8-13, (2016).
DOI: 10.1109/isscc.2016.7417888
Google Scholar
[3]
M. Muhamad, S. Lokman, and H. Hussin, Optimization in fabricating 90nm NMOS transistors using Silvaco,, in SCOReD2009 - Proceedings of 2009 IEEE Student Conference on Research and Development, pp.258-261, (2009).
DOI: 10.1109/scored.2009.5443057
Google Scholar
[4]
R. Granzner, Z. Geng, W. Kinberger, and F. Schwierz, Mosfet scaling: Impact of twodimensional channel materials,, in 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.466-469, (2016).
DOI: 10.1109/icsict.2016.7998953
Google Scholar
[5]
M. Ehteshamuddin, S. A. Loan, and M. Rafat, Planar junctionless silicon-on-insulator transistor with buried metal layer,, IEEE Electron Device Letters, vol. 39, no. 6, pp.799-802, (2018).
DOI: 10.1109/led.2018.2829915
Google Scholar
[6]
S. Roy, H. Ramiah, A. W. Reza, C. C. Lim, and E. M. Ferrer, Design of a MEMS-Based oscillator using 180nm CMOS technology,, PLoS ONE, (2016).
DOI: 10.1371/journal.pone.0158954
Google Scholar
[7]
Q. Xie, Z. Wang, and Y. Taur, Analysis of short-channel effects in junctionless dg mosfets,, IEEE Transactions on Electron Devices, vol. 64, no. 8, pp.3511-3514, (2017).
DOI: 10.1109/ted.2017.2716969
Google Scholar
[8]
W. Li, M. D. Brubaker, B. T. Spann, K. A. Bertness, and P. Fay, Gan nanowire mosfet with near-ideal subthreshold slope,, IEEE Electron Device Letters, vol. 39, no. 2, pp.184-187, (2018).
DOI: 10.1109/led.2017.2785785
Google Scholar
[9]
Q. Xie, X. Lin, Y. Wang, S. Chen, M. J. Dousti, and M. Pedram, Performance comparisons between 7-nm finfet and conventional bulk cmos standard cell libraries,, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp.761-765, Aug (2015).
DOI: 10.1109/tcsii.2015.2391632
Google Scholar
[10]
M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, P. Sarangapani, and G. Klimeck, Optimum high-k oxide for the best performance of ultra-scaled double-gate mosfets,, IEEE Transactions on Nanotechnology, vol. 15, no. 6, pp.904-910, (2016).
DOI: 10.1109/tnano.2016.2583411
Google Scholar
[11]
T. Oproglidis, T. Karatsori, S. Barraud, G. Ghibaudo, and C. Dimitriadis, Leakage current conduction in metal gate junctionless nanowire transistors,, Solid-State Electronics, vol. 131, 02 (2017).
DOI: 10.1016/j.sse.2017.02.003
Google Scholar
[12]
A. Baidya, T. R. Lenka, and S. Baishya, Mixed-mode simulation and analysis of 3d double gate junctionless nanowire transistor for cmos circuit applications,, Superlattices and Microstructures, vol. 100, pp.14-23, (2016).
DOI: 10.1016/j.spmi.2016.08.028
Google Scholar
[13]
Y. Omura, S. Horiguchi, M. Tabe, and K. Kishi, Quantum-mechanical effects on the threshold voltage of ultrathin-soi nmosfets,, IEEE Electron Device Letters, vol. 14, pp.569-571, Dec (1993).
DOI: 10.1109/55.260792
Google Scholar
[14]
S. Ghosh and L. Rajan, Zinc oxide thin-film transistor with catalytic electrodes for hydrogen sensing at room temperature,, IEEE Transactions on Nanotechnology, vol. 20, pp.303-310, (2021).
DOI: 10.1109/tnano.2021.3068994
Google Scholar
[15]
W. M. Abdelraheem and E. S. Mohamed, The effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation and virulence genes expression," The Journal of Infection in Developing Countries, vol. 15, pp.826-832.
DOI: 10.3855/jidc.13958
Google Scholar
[17]
R. C. Hoffmann, S. Sanctis, M. O. Liedke, M. Butterling, A. Wagner, C. Njel, and J. J. Schneider, Zinc oxide defect microstructure and surface chemistry derived from oxidation of metallic zinc: Thin-film transistor and sensor behavior of zno films and rods,, Chemistry - A European Journal, vol. 27, no. 17, pp.5422-5431, (2021).
DOI: 10.1002/chem.202004270
Google Scholar
[18]
K. Lu, R. Yao, W. Xu, H. Ning, X. Zhang, G. Zhang, Y. Li, J. Zhong, Y. Yang, and J. Peng, Alloy-electrode-assisted high-performance enhancement-type neodymium-doped indium-zincoxide thin-film transistors on polyimide flexible substrate,, Research, vol. 2021, (2021).
DOI: 10.34133/2021/5758435
Google Scholar
[19]
K. Li, Y. Zhang, W. Zhong, X. Deng, X. Yang, H. Chen, and B. Zhang, A new sic split-gate mosfet structure with protruded p-base and the mesa above jfet for improving hf-fom,, in 2019 16th China International Forum on Solid State Lighting 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), pp.29-32, (2019).
DOI: 10.1109/sslchinaifws49075.2019.9019759
Google Scholar
[20]
Q. Wang, A. Puntambekar, and V. Chakrapani, Co-adsorption of water and oxygen on gan: Effects of charge transfer and formation of electron depletion layer,, The Journal of Chemical Physics, vol. 147, no. 10, p.104703, (2017).
DOI: 10.1063/1.4991322
Google Scholar
[21]
N. Xu, B. Ho, M. Choi, V. Moroz, and T. K. Liu, Effectiveness of stressors in aggressively scaled finfets,, IEEE Transactions on Electron Devices, vol. 59, pp.1592-1598, June (2012).
DOI: 10.1109/ted.2012.2189861
Google Scholar
[22]
N. Gehlawat and G. Saini, Random dopant induced threshold voltage variation analysis of asymmetric spacer finfets,, in 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp.953-956, (2017).
DOI: 10.1109/icoei.2017.8300848
Google Scholar
[23]
S. Kaundal, S. Kaushal, and A. K. Rana, Performance estimation of junctionless finfet with graded channel design,, in 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp.373-376, (2017).
DOI: 10.1109/ispcc.2017.8269706
Google Scholar
[24]
J. Singh, N. Yadava, and R. Chauhan, Impact of doping density on junctionless gate stack fd-soi mosfet for analog/rf application,, in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp.1-4, (2019).
DOI: 10.1109/i2ct45611.2019.9033758
Google Scholar
[25]
A. R. Brown, A. Asenov, and J. R. Watling, Intrinsic fluctuations in sub 10-nm double-gate mosfets introduced by discreteness of charge and matter,, IEEE Transactions on Nanotechnology, vol. 1, pp.195-200, Dec (2002).
DOI: 10.1109/tnano.2002.807392
Google Scholar
[26]
Z. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, A top-gate gan nanowire metal-semiconductor field effect transistor with improved channel electrostatic control,, Applied Physics Letters, vol. 108, no. 3, p.033101, (2016).
DOI: 10.1063/1.4940197
Google Scholar
[27]
A. Kumar, N. Gupta, S. Singh, B. Tiwari, M. M. Tripathi, and R. Chaujar, Carbon nanotube recessed channel (cnt-rc) mosfet for high linearity/ulsi applications,, in TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp.2564-2567, (2019).
DOI: 10.1109/tencon.2019.8929540
Google Scholar
[28]
B. Hoefflinger, ITRS: The International Technology Roadmap for Semiconductors. Springer, Berlin, Heidelberg, 10 2011.[29] S. T. Sadasivan, T. E. Ayoob Khan, and S. Hameed, A gaas based metal-interlayer- semiconductor s/d finfet,, in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), pp.1-4, (2018).
DOI: 10.1109/icetietr.2018.8529122
Google Scholar
[30]
V. M. Srivastava, Scaling effect of cylindrical surrounding double-gate mosfet: A device beyond 22 nm technology,, in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp.1-5, (2017).
DOI: 10.1109/icaccs.2017.8014562
Google Scholar
[31]
D. Lei, K. H. Lee, Y.-C. Huang, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, S. Xu, Y. Wu, C. S. Tan, X. Gong, and Y.-C. Yeo, Enhanced germaniumtin p-channel finfet performance using post-metal anneal,, in 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp.50-52, (2018).
DOI: 10.1109/edtm.2018.8421413
Google Scholar
[32]
F. A. Md Rezali, N. A. F. Othman, M. Mazhar, S. Wan Muhamad Hatta, and N. Soin, Performance and device design based on geometry and process considerations for 14/16-nm strained finfets,, IEEE Transactions on Electron Devices, vol. 63, pp.974-981, March (2016).
DOI: 10.1109/ted.2016.2520583
Google Scholar
[33]
S. L. Tripathi and R. Mishra, Design of 20 nm finfet structure with round fin corners using side surface slope variation,, Journal of Electron Devices, vol. 18, pp.537-1542, 08 (2013).
Google Scholar
[34]
M. Z. Hossain and Q. D. M. Khosru, Threshold voltage roll-off due to channel length reduction for a nanoscale n-channel finfet,, International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS), pp.152-156, (2013).
Google Scholar
[35]
P. Rastogi, T. Dutta, S. Kumar, A. Agarwal, and Y. S. Chauhan, Quantum confinement effects in extremely thin body germanium n-mosfets,, IEEE Transactions on Electron Devices, vol. 62, pp.3575-3580, Nov (2015).
DOI: 10.1109/ted.2015.2477471
Google Scholar
[36]
V. Manimuthu, S. Yoshida, Y. Suzuki, F. Salleh, M. Arivanandhan, Y. Kamakura, Y. Hayakawa, and H. Ikeda, Seebeck coefficient of ge-on-insulator layers fabricated by direct wafer bonding process,, Advanced Materials Research, vol. 1117, pp.94-97, 05 (2015).
DOI: 10.4028/www.scientific.net/amr.1117.94
Google Scholar
[37]
S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, 7-nm finfet cmos design enabled by stress engineering using si, ge, and sn,, IEEE Transactions on Electron Devices, vol. 61, pp.1222-1230, May (2014).
DOI: 10.1109/ted.2014.2311129
Google Scholar
[38]
Chapter 5 - bandstructure and related properties,, in Silicon-Germanium Strained Layers and Heterostructures (S. Jain and M. Willander, eds.), vol. 74 of Semiconductors and Semimetals, pp.91-145, Elsevier, (2003).
DOI: 10.1016/s0080-8784(03)80018-2
Google Scholar
[39]
X. Lin, B. Zhang, Y. Xiao, H. Lou, L. Zhang, and M. Chan, Analytical current model for longchannel junctionless double-gate mosfets,, IEEE Transactions on Electron Devices, vol. 63, no. 3, pp.959-965, (2016).
DOI: 10.1109/ted.2016.2520558
Google Scholar
[40]
S. Chen, Y. Wang, X. Lin, Q. Xie, and M. Pedram, Performance prediction for multiplethreshold 7nm-finfet-based circuits operating in multiple voltage regimes using a cross-layer simulation framework,, in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp.1-2, Oct (2014).
DOI: 10.1109/s3s.2014.7028218
Google Scholar
[41]
N. Othman, F. Azhari, S. Hatta, and N. Soin, Optimization of 7 nm strained germanium finfet design parameters using taguchi method and pareto analysis of variance," ECS Journal of Solid State Science and Technology, vol. 7, pp. P161-P169, 01 2018.[42] C. Li, Y. Zhuang, and L. Zhang, "Simulation study on finfet with tri-material gate,, in 2012 IEEE International Conference on Electron Devices and Solid State Circuit, EDSSC 2012, pp.1-3, Dec (2012).
DOI: 10.1149/2.0081804jss
Google Scholar
[43]
P. Vimala and N. B. Balamurugan, Modelling the centroid and charge density in double-gate mosfets including quantum effects,, International Journal of Electronics, vol. 100, 09 (2013).
DOI: 10.1080/00207217.2012.743081
Google Scholar
[44]
Y. Jing, G. Han, Y. Liu, J. Zhang, and Y. Hao, Phonon limited electron mobility in germanium nfinfets: Fin direction dependence,, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-3, (2018).
DOI: 10.1109/icsict.2018.8565814
Google Scholar
[45]
R. G. Winter, Quantum Physics. Textbooks in Science and Mathematics Series, IPI Press, (1993).
Google Scholar
[46]
P. Vimala and N. R. Kumar, Comparative analysis of various parameters of si/ge channel trigate mosfet,, Journal of Nano Research, vol. 58, pp.32-39, 09 (2019).
Google Scholar
[47]
Z. Xu, J. Wang, Y. Cai, J. Liu, C. Jin, Z. Yang, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, Enhancement mode (e-mode) algan/gan mosfet with 10−13 a/mm leakage current and 1012 on/off current ratio,, IEEE Electron Device Letters, vol. 35, no. 12, pp.1200-1202, (2014).
DOI: 10.1109/led.2014.2360541
Google Scholar