[1]
J. Qi, A. Mauricio, and K. Gryllias, Prognostics of rolling element bearings based on entropy indicators and particle filtering,, in Proceedings of the Surveillance, Vishno and AVE conferences, (2019).
Google Scholar
[2]
B. Sun, S. Zeng, R. Kang, and M. G. Pecht, Benefits and challenges of system prognostics,, IEEE Transactions on Reliability, vol. 61, pp.323-335, (2012).
DOI: 10.1109/tr.2012.2194173
Google Scholar
[3]
Y. Lei, N. Li, L. Guo, N. Li, and J. Lin, Machinery health prognostics: A systematic review from data acquisition to rul prediction,, Mechanical Systems and Signal Processing, vol. 104, pp.799-834, (2018).
DOI: 10.1016/j.ymssp.2017.11.016
Google Scholar
[4]
J. Zhu, T. Nostrand, C. Spiegel, and B. Morton, Survey of condition indicators for condition monitoring systems,, in Proceedings of the Annual Conference of the Prognostics and Health Management Society, (2014).
Google Scholar
[5]
G. Huang, H. Li, J. Ou, Y. Zhang, and M. Zhang, A reliable prognosis approach for degradation evaluation of rolling bearing using mclstm,, Sensors, vol. 20, pp.1-16, (2020).
DOI: 10.3390/s20071864
Google Scholar
[6]
B. Wu, W. Li, and M.-q. Qiu, Remaining useful life prediction of bearing with vibration signals based on a novel indicator,, Shock and Vibration, vol. 2017, pp.1-10, (2017).
DOI: 10.1155/2017/8927937
Google Scholar
[7]
B. P. Duong and J.-M. Kima, Prognosis of remaining bearing life with vibration signals using a sequential monte carlo framework,, The Journal of the Acoustical Society of America, vol. 146, pp.1-7, (2019).
DOI: 10.1121/1.5129076
Google Scholar
[8]
T. Benkedjouh, N. Zerhouni, and S. Rechak, Bearings prognostics based on blind sources separation and robust correlation analysis,, in Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, (2017).
DOI: 10.5220/0006472006580663
Google Scholar
[9]
R. Guo and Y. Wang, Remaining useful life prognostics for the rolling bearing based on a hybrid data-driven method,, Journal of Systems and Control Engineering, vol. 235, pp.517-531, (2020).
DOI: 10.1177/0959651820948284
Google Scholar
[10]
L. Ren, Y. Sun, H. Wang, and Z. Lin, Prediction of bearing remaining useful life with deep convolution neural network,, IEEE Access, vol. 6, pp.13041-13049, (2018).
DOI: 10.1109/access.2018.2804930
Google Scholar
[11]
T. R. Kurfess, S. Billington, and S. Y. Liang, Advanced Diagnostic and Prognostic Techniques for Rolling Element Bearings.[12] N. A. S. Administration, Pcoe datasets,, 2020. data retrieved from the NASA Website, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
DOI: 10.1007/1-84628-269-1_6
Google Scholar
[13]
B. P. Duoung, S. A. Khan, D. Shon, K. Im, J. Park, D.-S. Lim, B. Jang, and J.-M. Kim, A reliable health indicator for fault prognosis of bearings,, Sensors (Bassel), vol. 18, pp.3740-3756, (2018).
DOI: 10.3390/s18113740
Google Scholar
[14]
N. Li, Y. Lei, , J. Lin, and S. X. Ding, An improved exponential model for predicting remaining useful life of rolling element bearings,, IEEE Transactions on Industrial Electronics, vol. 62, pp.7762-7773, (2018).
DOI: 10.1109/tie.2015.2455055
Google Scholar
[15]
A. Wasim, S. A. Khan, and J.-M. Kim, A hybrid prognostics technique for rolling element bearings using adaptive predictive models,, IEEE Transactions on Industrial Electronics, vol. 65, pp.1577-1584, (2017).
DOI: 10.1109/tie.2017.2733487
Google Scholar
[16]
J. K. Kimotho and W. Sextro, An approach for feature extraction and selection from nontrending data for machinery prognosis,, in Proceedings of the Second European Conference of the Prognostics and Health Management Society, (2014).
Google Scholar
[17]
A. Soualhi, K. Medjaher, and N. Zerhouni, Bearing health monitoring based on hilbert-huang transform, support vector machine, and regression,, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 465, pp.261-276, (2014).
DOI: 10.1109/tim.2014.2330494
Google Scholar
[18]
M. Boufenar, S. Rechak, and M. Rezig, Time-Frequency Analysis Techniques Review and Their Application on Roller Bearings Prognostics. (2012).
DOI: 10.1007/978-3-642-28768-8_25
Google Scholar
[19]
A. K. Mahamad, S. Saon, and T. Hiyama, Predicting remaining useful life of rotating machinery based artificial neural network,, Computers and Mathematics with Applications, vol. 60, pp.1078-1087, (2010).
DOI: 10.1016/j.camwa.2010.03.065
Google Scholar
[20]
M. Tableman and J. S. Kim, Survival Analysis Using S - Analysis of Time-to-Event Data. Chapman & Hall/CRC, (2004).
Google Scholar
[21]
D. L. Nadler and I. G. Zurbenko, Developing a weibull model extension to estimate cancer latency,, International Scholarly Research Notices Epidemiology, vol. 18, pp.1-6, (2013).
DOI: 10.5402/2013/750857
Google Scholar
[22]
M. Paterno, On random-number distributions for c++0x,, 2004. https://www.openstd.org/jtc1/sc22/wg21/docs/papers/2004/n1588.pdf.
Google Scholar
[23]
E. T. Lee and J. W. Wang, Statistical Methods for Survival Data Analysis. Wiley Interscience, (2003).
Google Scholar
[24]
G. Cybenko, Approximations by superpositions of sigmoidal functions,, Mathematics of Control, Signals, and System, vol. 2, pp.303-314, (1989).
Google Scholar
[25]
K. Hornik, Multilayer feedforward networks are universal approximators,, Neural Networks, vol. 2, pp.359-366, (1991).
DOI: 10.1016/0893-6080(89)90020-8
Google Scholar
[26]
Neural network for predictions. how to improve it," 2016. data retrieved from codeburst Website, https://www.mathworks.com/matlabcentral/answers/49959-neural-network-forpredictions-how-to-improve-it,s_tid=srchtitle.
Google Scholar
[27]
Why is my neural network performing worse as the number of hidden layers increases?," 2015. data retrieved from codeburst Website, https://www.mathworks.com/matlabcentral/answers/232036-why-is-my-neural-network-performing-worse-as-the-number-of-hidden-layersincreases?s_tid=srchtitle.[28] MathWorks ®, "Function fitting neural network," 2021. https://www.mathworks.com/help/deeplearning/ref/fitnet.html,searchHighlight=fitnet&s_tidsrchtitle.
Google Scholar
[29]
P. E. Gill and W. Murray, Algorithms for the solution of the nonlinear least-squares problem,, SIAM Journal on Numerical Analysis, vol. 15, pp.977-992, (1978).
DOI: 10.1137/0715063
Google Scholar
[30]
P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso, B. Morello, N. Zerhouni, and C. Varnier, Pronostia: An experimental platform for bearings accelerated life test,, in Proceedings of the IEEE International Conference on Prognostics and Health Management, (2012).
Google Scholar
[31]
MathWorks ®, Monotonicity,, 2021. https://www.mathworks.com/help/predmaint/ref/monotonicity.html.
Google Scholar
[32]
MathWorks ®, Prognosability,, 2021. https://www.mathworks.com/help/predmaint/ref/prognosability.html.
Google Scholar
[33]
MathWorks ®, Trendability,, 2021. https://www.mathworks.com/help/predmaint/ref/trendability.html.
Google Scholar
[34]
MathWorks ®, How can i choose the parameters of my network?," 2013. https://www.mathworks.com/matlabcentral/answers/63601-how-can-i-choose-the-parameters-of-mynetwork,s_tid=srchtitle.
Google Scholar
[35]
IEEE PHM 2012 Challenge Details., https://github.com/Lucky-Loek/ieee-phm-2012-datachallenge-dataset. Accessed: 2021-01-30.
Google Scholar
[36]
A. Z. Hinchi and M. Tkiouat, Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network,, PROCEDIA Computer Science, vol. 127, pp.123-132, (2018).
DOI: 10.1016/j.procs.2018.01.106
Google Scholar
[37]
D. Zhao and F. Liu, Cross-condition and cross-platform remaining useful life estimation via adversarial-based domain adaptation,, 2021. https://www.researchsquare.com/article/rs669444/v1.
DOI: 10.21203/rs.3.rs-669444/v1
Google Scholar
[38]
M. Wentao, B. Sun, and L. Wang, A new deep dual temporal domain adaptation method for online detection of bearings early fault,, Entropy, vol. 23(2):162, pp.1-19, (2021).
DOI: 10.3390/e23020162
Google Scholar
[39]
P. R. d. Oliveira da Costa, A. Akcay, and U. Kayma, Remaining useful lifetime prediction via deep domain adaptation,, Reliability Engineering & System Safety, vol. 195, pp.1-30, (2020).
DOI: 10.1016/j.ress.2019.106682
Google Scholar
[40]
J. Li, X. Li, and D. He, Domain adaptation remaining useful life prediction method based on adabn-dcnn,, in Proceedings of the Annual Conference of the PHM Society, (2019).
DOI: 10.1109/phm-qingdao46334.2019.8942857
Google Scholar
[41]
M. Ragab, C. S. Foo, C. K. Kwoh, R. Yan, and X. Li, Contrastive adversarial domain adaptation for machine remaining useful life prediction,, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, vol. 17, pp.5239-5249, (2021).
DOI: 10.1109/tii.2020.3032690
Google Scholar
[42]
M. Russell and P. Wang, Domain adversarial transfer learning for generalized tool wear prediction,, in Proceedings of the Annual Conference of the PHM Society, (2020).
DOI: 10.36001/phmconf.2020.v12i1.1137
Google Scholar