Load Flow Study of Togo and Benin Transmission Power Network by the Newton-Raphson Method

Article Preview

Abstract:

Within the framework of the Economic Community of West African States (ECOWAS) countries power networks interconnection project carried by the West African Power Pool (WAPP), operating guidelines have been defined by WAPP and ECOWAS Regional Electricity Regulatory Authority (ERERA) to ensure efficient operation of the interconnected network. Each operator is obliged to comply with these directives to guarantee the stability and reliability of energy supply to ECOWAS countries. The purpose of this paper is to carry out the study of the power flow on the existing Togo and Benin power transmission network and to propose solutions for compliance with the requirements relating to the voltage level required on the interconnection lines or at connection points with neighboring power network operators. The dynamic stability of generators will also be studied to assess the behavior of the network during major disturbances. CEB (Communauté Electrique du Bénin in french) is the power transmission network operator of the Republic of Togo and the Republic of Benin. After the inventory of CEB transmission and production infrastructure and the consumption report, the model of CEB power network is produced as well as the single-line diagram. The power flow calculation is performed with the Newton-Raphson algorithm and the node voltages were calculated using the Cyme software. From the voltage values obtained at the various nodes and depending on the behavior of each generator, solutions are proposed to improve the voltage plan of the power network in accordance with the recommendations of the Regulatory Authority.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-71

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Tractebel, Update of the ECOWAS revised master plan for the development of power generation and transmission of electrical energy- Volume 0: Development of regional generation and transmission infrastructure - Master Plan, december (2018).

Google Scholar

[2] EDF SA, Prescriptions techniques de conception et de fonctionnement pour le raccordement d'une installation de production d'énergie électrique au réseau public HTB ≥ 50 kV des Zones non Interconnectées, Documentation technique de référence – SEI REF 01, (2016).

DOI: 10.1051/jtsfen/2018sou06

Google Scholar

[3] IRAF, Étude de l'intégration de la centrale ALBATROS dans le réseau RIMA, Étape 1: Analyse statique et dynamique du réseau cible, Conakry, (2016).

Google Scholar

[4] ARERA, System operation manual of WAPP interconnexion network- Decision N°007/ERERA/15, september (2015).

Google Scholar

[5] North core 330KV Interconnexion Nigeria-Niger- Burkina Faso- Benin/Togo – Reintegration action plan - Benin section - May (2018).

Google Scholar

[6] D. Ray Zimmerman & al, Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems, School of Electrical Engineering, Cornel1 University, Ithaca, NY 14853 USA, IEEE Transactions on Power System, Vol. 10, No. 4, November (1995).

DOI: 10.1109/59.476074

Google Scholar

[7] Ramasany Natarajan, Practical Power Associates Raleigh, North Carolina, U.S.A., Computer-Aided Power System Analysis, ISBN: 0-8247-0699-4, (2002).

Google Scholar

[8] S. Souag & al, Résolution de DC power flow par le langage graphique LabVIEW, Université Djilali Liabes, ACTA ELECTROTEHNICA, Mediamira Science Publisher, Volume 53, Number 3, (2012).

Google Scholar

[9] O. Alsac & al, Optimal load flow with steady-state security, Power Systems Laboratory, University of Manchester, Institute of Science and Technology, Manchester, U.K., October .26, (1973).

Google Scholar

[10] D. Abdellah, Répartition optimale des puissances utilisant les techniques de l'intelligence artificielle, Université des Frères Mentouri Constantine, Faculté des Sciences De l'Ingénieur, Département d'Electrotechnique, (2016).

DOI: 10.12982/nlsc.2023.009

Google Scholar

[11] F. William Tinney & al, Power flow solution by Newton's Method. IEEE transactions on power apparatus and systems, vol. pas-86, no.11, november (1967).

DOI: 10.1109/tpas.1967.291823

Google Scholar

[12] E. Acha, A Newton-type algorithm for the control of power flow in electrical power networks"- IEEE Transactions on Power Systems, Vol. 12, No. 4, November (1997).

DOI: 10.1109/59.627844

Google Scholar

[13] Y. Bot, Influence des FACTS sur le calcul de l'écoulement des puissances en utilisant un IPFC, Université des Sciences et de la Technologie d'Oran, Mohamed Boudiaf, Faculté de Génie Electrique, Département d'Electrotechnique, (2011).

DOI: 10.22453/lsj-020.2.272-284

Google Scholar

[14] Cyme 8.2 Power engineering software, User Guide & Manual and reference, Cyme international T&D Inc, (2012).

Google Scholar

[15] CEB, Technical operation report from telecontrol center of CEB, Headquaters Lome Togo, February (2020).

Google Scholar

[16] H. Wayne Beaty, Power Calculations - Third Edition, Mcgraw-Hill, 1984 by The McGraw-Hill Companies, Inc, (2001).

Google Scholar

[17] N. Yalaoui, Calcul de la matrice d'impédance linéique du système ligne-câble avec la méthode des éléments finis, Université de Moréal, Département de Génie Électrique, École Polytechnique de Montréal, (2017).

Google Scholar

[18] E. Tractebel, Update of the ECOWAS revised master plan for the development of power generation and transmission of electrical energy- Volume 4: Generation and Transmission Master Plan, december (2018).

Google Scholar

[19] S. Mazumder Ami, Power Quality Improvements in Low Voltage Distribution Networks Containing Distributed Energy Resources, School of Electrical Engineering and Computer Science, Science and Engineering Faculty, Queensland University of Technology, (2015).

Google Scholar

[20] M. Vander Da Costa & al, Development in the Newton Raphson power flow formulation based in current injection- IEEE transaction on power systems, Vol 14, N°4, november (1999).

DOI: 10.1109/59.801891

Google Scholar

[21] Marty, Wolfgang, A Newton-Raphson method for numerically constructing invariant curves, University of Zurich, Faculty of Science, (2009).

Google Scholar

[22] O.D.E., The analysis of operation and stability of the OMVG transport network, CIMA (2015).

Google Scholar

[23] IRAF, Study for integration of ALBATROS power plant in RIMA power network; Step 1- Static and dynamic analysis, april (2018).

Google Scholar

[24] K. Hossain, Synchronous Machine Parameter Identification by Stand-Still Tests, Department Of Electrical And Electronic Engineering Dhaka University Of Engineering And Technology Gazipur, (2006).

DOI: 10.15251/cl.2020.172.85

Google Scholar

[25] H. Saadat, Power System Analysis, McGraw Hill & Co, Library of congress Cataloging-In-Publication-Data, (1999).

Google Scholar