Evaluation of Mechanical Properties in Concrete Structure Reinforced with Carbon Fiber Coating

Article Preview

Abstract:

In this study, it was possible to evidence the efficiency of the use of carbon fiber coating in concrete structures and its application to promote the protection and maintenance of these materials, seeking to prolong the useful life of this type of structure. From mechanical tests, such as compressive strength, it was possible to observe an increase of 37% in the breaking load, as well as an increase of about 40% in compressive strength, when compared to tests with pure concrete. Therefore, the results pointed to the optimization of the mechanical properties of the structure, coated with carbon fiber and cured with epoxy resin. In other words, the use of this external load combined with epoxy resin was an important element in concrete reconstruction and reinforcement. Another interesting point was the issue of the high fiber rigidity observed in the AFM, allowing an excellent interaction with the resin in the coating of the specimen. The study showed that this type of coating can be used for the recovery of structures, as well as a reinforcement element, since many projects have difficulties with the high maintenance cost, as well as the daily monitoring of concrete structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-126

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. S. Pereira. Recuperação estrutural de vigas de concreto armado colapsadas utilizando reforço de fibra de carbono, (2016). 27 f. Artigo (Graduação em Engenharia Civil) – Universidade do Extremo Sul Catarinense, Criciúma.

DOI: 10.17771/pucrio.acad.6958

Google Scholar

[2] C. Xiong, Q. Li, T. Lan, H. Li, W. Long, F. Xing, Sustainable use of recycled carbon fiber reinforced polymer and crumb rubber in concrete: mechanical properties and ecological evaluation, Vol. 279 (2021), pp.1-14.

DOI: 10.1016/j.jclepro.2020.123624

Google Scholar

[3] D.D.L. Chung. Cement reinforced with short carbon fibers: a multifunctional material, Composites: B 31, Vol. 6 (2000), p.511–526.

DOI: 10.1016/s1359-8368(99)00071-2

Google Scholar

[4] P. Garcés, J. Fraile, E. Vilaplana-Ortego, D. Cazorla-Amorós, E.G. Alcocel, L.G. Andión, Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars, Cem. Concr. Res. Vol.35 (2) (2005), p.324–331.

DOI: 10.1016/j.cemconres.2004.05.013

Google Scholar

[5] F. Reza, J. A. Yamamuro, G. B. Batson. Electrical resistance change in compact tension specimens of carbon fiber cement composites, Cem. Concr. Compos. Vol 26 (7) (2004), p.873–881.

DOI: 10.1016/j.cemconcomp.2003.06.002

Google Scholar

[6] V. C. Li, K. Hobla, Effect of fiber length variation on tensile properties of carbon fiber cement composite, Compos. Eng. Vol. 4 (9) (1994), p.947–964.

DOI: 10.1016/0961-9526(94)90037-x

Google Scholar

[7] D-M. Bontea, D.D.L. Chung, G.C. Lee. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement, Cem. Concr. Res. Vol. 30 (4) (2000), p.651–659.

DOI: 10.1016/s0008-8846(00)00204-0

Google Scholar

[8] C. Wang, K.-Z. Li, H.-J. Li, G.-S. Jiao, J. Lu, D.-S. Hou. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites, Mater. Sci. Eng: A 487. Vol. (1–2) (2008), p.52–57.

DOI: 10.1016/j.msea.2007.09.073

Google Scholar

[9] Z. Bayasi, J. Zeng. Properties of polypropylene fiber reinforced concrete, Am. Concr. Inst. J. 90 Vol. (6) (1993), p.605–610.

Google Scholar

[10] D. Foti, On the numerical and experimental strengthening assessment of tufa masonry with FRP, Mech. Adv. Mater. Struct. Vol. 20 (2) (2013), p.163–175.

DOI: 10.1080/15376494.2012.743634

Google Scholar

[11] D. Foti, S. Vacca, Comportamiento mecánico de columnas de hormigón armadoreforzadas con mortero reoplástico/Mechanical behavior of concrete columns reinforced with rheoplastic mortar, Materiales De Construcción. Vol. 63 (310) (2013), p.267–282.

DOI: 10.3989/mc.2012.03512

Google Scholar

[12] FIB bulletin n. 40, 'FRP reinforcement in RC structures, has been added, (2007).

Google Scholar

[13] D. Foti, Preliminary analysis of concrete reinforced with waste bottles PET fibers, Constr. Build. Mater. Vol. 25 (2011), p.1906–1915.

DOI: 10.1016/j.conbuildmat.2010.11.066

Google Scholar

[14] M.S. Meddah, M. Bencheikh, Properties of concrete reinforced with different kinds of industrial waste fibre materials, Constr. Build. Mater. 23 (10) (2009) 3196–3205.

DOI: 10.1016/j.conbuildmat.2009.06.017

Google Scholar

[15] D. Foti, Use of recycled waste pet bottles fibers for the reinforcement ofconcrete, Compos. Struct. Vol. 96 (2013), p.396–404.

DOI: 10.1016/j.compstruct.2012.09.019

Google Scholar

[16] F. Fraternali, I. Farina, C. Polzone, E. Pagliuca, L. Feo, On the use of R-PET strips for the reinforcement of cement mortars, Composites Part B: Eng. Vol. 46 (2013), p.207–210.

DOI: 10.1016/j.compositesb.2012.09.070

Google Scholar

[17] R. Siddique, J. Khatib, I. Kaur. Use of recycled plastic in concrete: A review, Waste Manage. Vol. 28 (2008), p.1835–1852.

DOI: 10.1016/j.wasman.2007.09.011

Google Scholar

[18] L.P. Pereora de Oliveira, J.P. Castro-Gomez, Physical and mechanical behaviour of recycled PET fibre reinforced mortar, Constr. Build. Mater. Vol. 25 (2011), p.1712– 1717.

DOI: 10.1016/j.conbuildmat.2010.11.044

Google Scholar

[19] E. Rahmani, M. Dehestani, M.H.A. Beygi, H. Allahyari, I.M. Nikbin, On the mechanical properties of concrete containing waste PET particles, Constr. Build. Mater. Vol. 47 (2013), p.1302–1308.

DOI: 10.1016/j.conbuildmat.2013.06.041

Google Scholar

[20] L. Ávila Córdoba, G. Martínez-Barrera, C. Barrera Díaz, F. Ureña Nuñez, A. Loza Yañez, Effects on mechanical properties of recycled PET in cement-based composites, Int. J. Polym. Sci. (2013), p.1–6.

DOI: 10.1155/2013/763276

Google Scholar

[21] T. Ochi, S. Okubo, K. Fukui, Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cem. Concr. Compos. Vol. 29 (2007), p.448–455.

DOI: 10.1016/j.cemconcomp.2007.02.002

Google Scholar

[22] S.B. Kim, N.H. Yi, H.Y. Kim, J.H.J. Kim, Y.-C. Song, Material and structural performance evaluation of recycled PET fiber reinforced concrete, Cem. Concr. Compos. Vol. 32 (2010), p.232–240.

DOI: 10.1016/j.cemconcomp.2009.11.002

Google Scholar

[23] S. Chowdhury, A.T. Maniar, O. Suganya, Polyethylene terephthalate (PET) waste as building solution, Int. J. Chem. Environ. Biol. Sci. 1 (2013), p.2320–4087.

Google Scholar

[24] L.A. Cordoba, G.M. Berrera, C.B. Diaz, F.U. Nunez, A.L. Yanez, Effects on mechanical properties of recycled PET in cement-based composites, Int. J. Polym. Sci. (2013), p.1–6.

Google Scholar

[25] P. Neto, J. Alfaiate, J. Vinagre, A three-dimensional analysis of CFRP–concrete bond behavior, Composites Part B: Eng. Vol. 59 (2014), p.153–165.

DOI: 10.1016/j.compositesb.2013.11.025

Google Scholar

[26] I. Nishizaki, Y. Kato, Durability of the adhesive bond between continuous fibre sheet reinforcements and concrete in an outdoor environment, Constr. Build. Mater. Vol. 25 (2011), p.515–522.

DOI: 10.1016/j.conbuildmat.2010.04.067

Google Scholar

[27] X. Wang, W. Zhang, W. Cui, F.H. Wittmann, Bond strength of corroded steel bars in reinforced concrete structural elements strengthened with CFRP sheets, Cem. Concr. Compos. Vol. 33 (2011), p.513–519.

DOI: 10.1016/j.cemconcomp.2011.02.008

Google Scholar

[28] J. Xie, R. Hub, Experimental study on rehabilitation of corrosion-damaged reinforced concrete beams with carbon fiber reinforced polymer, Constr. Build. Mater. Vol. 38 (2012), p.708–716.

DOI: 10.1016/j.conbuildmat.2012.09.023

Google Scholar

[29] M. R. Garcez. Alternativas para Melhoria no Desempenho de Estruturas de Concreto Armado Reforçadas pela Colagem de Polímeros Reforçados com Fibras. 2007. 241p. Tese (Doutorado em Engenharia Civil) – Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, (2007).

DOI: 10.29381/0103-8559/2020300182-6

Google Scholar

[30] V. Mechtcherinea, A. Michela, M. Liebschera, K. Schneidera, C. Großmann, Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: Material and automation perspectives. Vol. 110 (2020), pp.1-8.

DOI: 10.1016/j.autcon.2019.103002

Google Scholar

[31] P. J. Lange; P. G. Akker; E. Mader; S. L. Gao; W. Prasithphol; R. J. Young, Controlled Interfacial Adhesion of Twaron© Aramida Fibers in Composites by finish formulation. Composites Science and Technology. Vol 67, pp.2027-2035, 2007.

DOI: 10.1016/j.compscitech.2006.11.018

Google Scholar

[32] F. Zhao; Y. Huang, Improved interfacial properties of carbon fiber/epoxy composites through grafiting polyhedral oligomeric slisesquioxane on carbon fiber surface. Materials Letters. Vol. 64, pp.2742-2744, 2010.

DOI: 10.1016/j.matlet.2010.08.074

Google Scholar